高超声速风洞稀薄流场转动温度和振动温度测量研究

Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field

  • 摘要: 稀薄流场中转动温度与振动温度的不一致是热力学非平衡的具体表现,可采用电子束荧光技术这一非接触测量手段对稀薄流场的转动温度和振动温度进行测量。本文介绍了电子束荧光技术用于测量稀薄流场转动温度与振动温度的基本原理和方法,给出了在某风洞中开展的喷管出口稀薄流场转动温度、振动温度测量结果。重复性测量结果表明:转动温度最大相对不确定度为0.26%,振动温度最大相对不确定度为0.8%;Ma = 12和16锥形喷管出口截面上的转动温度与振动温度分布特征体现了锥形喷管膨胀流动的特点,而各喷管在3个不同状态的测量结果表明:随着稀薄度增加,振动温度与转动温度的偏差会越大,热力学非平衡现象也越突出。

     

    Abstract: The inconsistency of rotational temperature and vibrational temperature in the rarefied flow field is a concrete manifestation of thermodynamic non-equilibrium. The non-intrusive measurement method of rotational temperature and vibrational temperature in the rarefied flow field can be measured by the Electron Beam Fluorescence (EBF) technique. The basic principle and measurement method of EBF were introduced in this paper. Experiment was carried out in the Ma = 12 and Ma = 16 conical nozzle of the wind tunnel. The rotational temperature maximum relative uncertainty is 0.26% and the vibrational temperature maximum relative uncertainty is 0.8% from the analysis of repetitive measurement results. The distribution of rotational temperature and vibrational temperature on the exit section of the Ma = 12 and Ma = 16 conical nozzle reflects the characteristics of expansion flow of the conical nozzle. The measurement results of three states of each nozzle show that with the increase of rareness, the larger the deviation between the vibrational temperature and the rotational temperature is, the more prominent the thermodynamic non-equilibrium phenomenon appears.

     

/

返回文章
返回