Experimental investigation on tunnel pressure wave of high-speed train
-
摘要: 高速列车驶入隧道时会产生初始压缩波,其沿隧道纵向传播至出口时会向隧道外辐射形成微气压波。本文搭建了利用高压空气瞬间释放产生初始压缩波的实验装置,对其产生的压缩波开展了实验研究。介绍了实验装置的组成,分析了隧道内压力时程曲线及形成机理,给出了实验装置各参数对初始压缩波的影响规律,对压缩波的后续衰减过程进行了分析。实验结果表明:隧道内的压力波动主要受隧道出入口的反射波影响;通过改变实验装置相关参数能够对初始压缩波的波形进行调节;不同高压腔初始压力下,压缩波的衰减周期相同,但初始幅值越大,相同时间内压力衰减得越快。Abstract: When a high-speed train enters a tunnel, an initial compression wave occurs and radiates to the outside of the tunnel to form a micro pressure wave when it propagates longitudinally along the tunnel to the exit. An experimental device for generating the initial compression wave by the instantaneous release of high-pressure air was built, and the experimental research on the compression wave generated by it was carried out. Firstly, the composition of the experimental device was introduced, and the pressure time history curve and formation mechanism in the tunnel were analyzed. Secondly, the influence of the parameters of the experimental device on the initial compression wave was drawn out. The subsequent attenuation process of the compression wave was studied at last. The experimental results show that the pressure fluctuation in the tunnel is mainly affected by the reflected wave at the tunnel portal. The amplitude, gradient and positive peak value of the initial compression wave can be adjusted by changing the relevant parameters of the experimental device. The attenuation period of the compression wave is the same under different initial pressures of the high-pressure chamber, but the larger the initial amplitude is, the faster the pressure decays in the same time period.
-
Key words:
- tunnel aerodynamics /
- high speed train /
- tunnel compression wave /
- experimental study
-
表 1 不同工况下,压力波动的平均周期
Table 1. The average period of pressure fluctuation under different working conditions
p0/kPa Tmean/ms 200 35.795 300 35.759 400 36.004 600 35.921 -
[1] TIAN S M, WANG W, GONG J F. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308–325. doi: 10.3973/j.issn.2096-4498.2021.02.018 [2] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002 [3] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6-7): 469–514. doi: 10.1016/S0376-0421(02)00029-5 [4] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009. [5] LIU F, YAO S, ZHANG J, et al. Field measurements of aerodynamic pressures in high-speed railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 72: 97–106. doi: 10.1016/j.tust.2017.11.018 [6] ADAMI S, KALTENBACH H J. Sensitivity of the wave-steepening in railway tunnels with respect to the friction model[C]//Proceedings of the 6th International Colloquium on: Bluff Body Aerodynamics and Applications, Milano. 2008. [7] 王宏林, 雷波, 毕海权. 压缩波惯性作用对其波形演变的影响[J]. 西南交通大学学报, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017WANG H L, LEI B, BI H Q. Influence of inertial effect of compression wave on waveform evolution[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017 [8] LIU F, VARDY A E, POKRAJAC D. Influence of air Chambers on wavefront steepening in railway tunnels[J]. Tunnelling and Underground Space Technology, 2021, 117: 104120. doi: 10.1016/j.tust.2021.104120 [9] FUKUDA T, NAKAMURA S, MIYACHI T, et al. Influence of ballast quantity on compression wavefront steepening in railway tunnels[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(6): 607–615. doi: 10.1177/0954409719852263 [10] IYER R S, KIM D H, KIM H D. Propagation characteristics of compression wave in a high-speed railway tunnel[J]. Physics of Fluids, 2021, 33(8): 086104. doi: 10.1063/5.0054868 [11] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009 [12] 王英学, 高波, 郑长青, 等. 高速列车进入隧道产生的微气压波实验研究[J]. 实验流体力学, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002WANG Y X, GAO B, ZHENG C Q, et al. Micro-compression wave model experiment on the high-speed train entering tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002 [13] 郭易, 郭迪龙, 杨国伟, 等. 长编组高速列车的列车风动模型实验研究[J]. 力学学报, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226GUO Y, GUO D L, YANG G W, et al. Moving model analysis of the slipstream of a long grouping high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226 [14] WANG J, WANG T, YANG M, et al. Effect of localized high temperature on the aerodynamic performance of a high-speed train passing through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104444. doi: 10.1016/j.jweia.2020.104444 [15] DU J, ZHANG L, YANG M, et al. Moving model experiments on transient pressure induced by a high-speed train passing through noise barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104267. doi: 10.1016/j.jweia.2020.104267 [16] LI X Z, WANG M, XIAO J, et al. Experimental study on aerodynamic characteristics of high-speed train on a truss bridge: a moving model test[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 26–38. doi: 10.1016/j.jweia.2018.05.012 [17] MATSUO K. Attenuation of compression waves in a high-speed railway tunnel simulator[C]//Proc. of 7th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels. 1991. [18] MIYACHI T, ARAI T, SAKAUE S, et al. Development of tunnel compression wave generator with multiple small solenoid valves[J]. Mechanical Engineering Journal, 2019, 6(2): 18–478. doi: 10.1299/mej.18-00478 [19] 朱仁庆, 杨松林, 杨大明. 实验流体力学[M]. 北京: 国防工业出版社, 2005. [20] MIYACHI T, FUKUDA T, SAITO S. Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch[J]. Journal of Sound and Vibration, 2014, 333(23): 6156–6169. doi: 10.1016/j.jsv.2014.06.037 [21] BELLENOUE M, AUVITY B, KAGEYAMA T. Blind hood effects on the compression wave generated by a train entering a tunnel[J]. Experimental Thermal and Fluid Science, 2001, 25(6): 397–407. doi: 10.1016/S0894-1777(01)00088-7 -