肖中云, 江雄, 牟斌, 陈作斌. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. DOI: 10.11729/syltlx20160207
引用本文: 肖中云, 江雄, 牟斌, 陈作斌. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. DOI: 10.11729/syltlx20160207
Xiao Zhongyun, Jiang Xiong, Mou Bin, Chen Zuobin. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15. DOI: 10.11729/syltlx20160207
Citation: Xiao Zhongyun, Jiang Xiong, Mou Bin, Chen Zuobin. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15. DOI: 10.11729/syltlx20160207

流体推力矢量技术研究综述

Advances influidic thrust vectoring technique research

  • 摘要: 流体推力矢量技术不采用机械偏转,以流动控制方式实现推力转向,有望成为一种更加高效的推力矢量控制方法。目前实现流体推力矢量的主要方法有激波矢量法、双喉道方法、逆流控制方法和同向流方法等,对以上方法选择具有共性的计算与试验数据,对喷管的推力矢量效率、推力损失和流量系数进行了对比分析。结果表明激波矢量方法、双喉道方法和逆流方法能够在大落压比范围内(NPR=1.89~10)实现推力矢量控制,并且具有俯仰/偏航耦合甚至多轴控制的潜力。相比激波矢量法和逆流方法,双喉道和同向流方法在减少推力损失和提高矢量效率上占有优势,不足之处是双喉道方法对喉道进行控制限制了流量系数,而同向流方法的适用落压比范围受到严重限制。为寻求更加高效的矢量喷管技术,国内外相继发展了多种新概念流体推力矢量方法,对每种方法的控制原理、潜在优势和存在的问题挑战进行了探讨,新方法着眼于从喷流出口下游进行控制,对主流的干扰很小,值得深入研究,同时也为流体推力矢量的下一步研究方向提供了借鉴参考。

     

    Abstract: In contrast to the mechanical deflecting nozzle, the fluidic thrust vectoring control hires flow control methods to realize the jet vectoring, which is expected to be a more efficient way to manipulate the thrust direction. Among the main fluidic vectoring control methods, including shock vectoring control(SVC), dual throat nozzle(DTN), counter-flow(CC) and co-flow control, performance parameters such as the thrust vectoring efficiency, the thrust ratio and the discharge coefficient are compared based on published experimental and computational data. It shows that SVC, DTN and CC methods produce thrust vectoring in a wide range of Nozzle Pressure Ratio(NPR) from 1.8 to 10, and are extendable to pitch/yaw control or multi-axis control. Comparatively, DTN and co-flow control are superior to SVC and CC in the thrust loss and thrust vectoring efficiency, yet DTN is disadvantageous in the discharge coefficient as a consequence of throat injection, and the working range of co-flow method is highly limited. In pursuit of highly efficient control, some new methods of jet vectoring are introduced, and the principles, potential advantages and challenges of each method are discussed. These methods adopt after-deck-flow control and introduce little disturbance to the main jet, which are desirable for the thrust vectoring control. Such methods show promising prospects and the related experience should be drawn on for further studies.

     

/

返回文章
返回