留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙元对高超声速边界层转捩影响的研究进展

董昊 刘是成 程克明

董昊, 刘是成, 程克明. 粗糙元对高超声速边界层转捩影响的研究进展[J]. 实验流体力学, 2018, 32(6): 1-15. doi: 10.11729/syltlx20180167
引用本文: 董昊, 刘是成, 程克明. 粗糙元对高超声速边界层转捩影响的研究进展[J]. 实验流体力学, 2018, 32(6): 1-15. doi: 10.11729/syltlx20180167
Dong Hao, Liu Shicheng, Cheng Keming. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 1-15. doi: 10.11729/syltlx20180167
Citation: Dong Hao, Liu Shicheng, Cheng Keming. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 1-15. doi: 10.11729/syltlx20180167

粗糙元对高超声速边界层转捩影响的研究进展

doi: 10.11729/syltlx20180167
基金项目: 

国家自然科学基金项目 11872208

装备预研领域基金项目 61402060301

详细信息
    作者简介:

    董昊(1983-),男,河南偃师人,博士,副教授。研究方向:高超声速风洞实验、边界层转捩。通信地址:江苏省南京市秦淮区御道街29号空气动力学系(210016)。E-mail:donghao@nuaa.edu.cn

    通讯作者:

    董昊, E-mail:donghao@nuaa.edu.cn

  • 中图分类号: O354.4

Review of hypersonic boundary layer transition induced by roughness elements

  • 摘要: 高超声速边界层转捩对高超声速飞行器气动设计具有重要影响。转捩控制一直是转捩研究的主要目的之一,在高超声速情况下主要采用粗糙元进行边界层转捩控制。回顾了近年来不同类型粗糙元对高超声速边界层转捩影响及控制的最新研究进展;从粗糙元对高超声速边界层的感受性问题以及横流失稳影响的角度,介绍了其在高超声速边界层转捩机理相关研究中的作用;简要介绍了南京航空航天大学高超声速风洞(NHW)的油膜干涉测量技术在粗糙元诱导的高超声速边界层转捩研究中的应用;讨论了当前粗糙元对高超声速边界层转捩影响研究存在的问题,展望了该研究未来发展趋势。
  • 图  1  高超粗糙元分类

    Figure  1.  Hypersonic roughness elements classification

    图  2  粗糙元临界高度和有效高度[22]

    Figure  2.  Critical height and effective height of roughness elements[22]

    图  3  基于DMD的粗糙元尾迹模态显示((a), (b), (c)分别表示20、40和53kHz的3种扰动模态)[29]

    Figure  3.  Visualization of different modes in the wake of roughness elements based on the DMD method(a, b, c respectively denote three disturbance modes of 20, 40 and 53kHz)[29]

    图  4  粗糙元上下游瞬时PIV流场图[33]

    Figure  4.  Instantaneous PIV flow field of upstream and downstream of roughness element[33]

    图  5  圆柱凹腔引起的发卡涡结构[39]

    Figure  5.  Hair-pin vortices induced by cylindrical cavity[39]

    图  6  长方形凹腔引起的流向涡结构(左:-10°,右:-15°)[40]

    Figure  6.  Streamwise vortices induced by rectangular cavity[40]

    图  7  模型表面瞬时压力脉动场分布((a)没有涂层,(b)优化后的涂层,(c)传统涂层)[51]

    Figure  7.  Instantaneous fluctuating pressure fields for (a) baseline case without porous coating, (b) optimized one, and (c) conventional one[51]

    图  8  小钝度锥模型及其纹影图(Ma=10)[54]

    Figure  8.  Small-bluntness model, (a) mounted in launch sabot and (b) model in flight at Ma=10[54]

    图  9  大钝度锥模型及其纹影图(Ma=10)[54]

    Figure  9.  Large-bluntness model, (a) mounted in launch sabot and (b) model in flight at Ma=10[54]

    图  10  粗糙表面多腔效应和涡旋动力学效应[57]

    Figure  10.  Illustration of the multiple-cavity effect and vortex dynamics over a rough surface[57]

    图  11  随机粗糙壁面流线分布(绿色标记为分离区)[58]

    Figure  11.  Streamline distribution on random rough wall (green marks separation zone)[58]

    图  12  高超声速转捩影响因素示意图[8]

    Figure  12.  Affecting factors of hypersonic transition[8]

    图  13  高超声速边界层自由流、壁面粗糙度扰动感受性[68]

    Figure  13.  The receptivity in a hypersonic flow induced by free-stream and surface roughness disturbance[68]

    图  14  慢模态和粗糙元引起的压力波动[83]

    Figure  14.  Pressure perturbations induced by mode S and surface roughness[83]

    图  15  横流边界层速度型[94]

    Figure  15.  Velocity profile of crossflow boundary layer[94]

    图  16  不同粗糙元条件下的转捩位置[106]

    Figure  16.  Transition locations induced by different roughness elements[106]

    图  17  不同单位雷诺数对粗糙元抑制转捩的影响[110]

    Figure  17.  Effect of Reynolds number on suppressing transition by roughness elements[110]

    图  18  光滑平板油膜干涉图像及表面摩阻系数对比

    Figure  18.  Oil film interference image of smooth flat plate and comparison of surface skin friction coefficient

    图  19  三维圆柱形孤立粗糙元后油膜干涉条纹以及数值模拟结果对比

    Figure  19.  Oil film interference fringes and numerical simulation results after 3D cylindrical isolated roughness elements

  • [1] 解少飞, 杨武兵, 沈清.高超声速转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201503002

    Xie S F, Yang W B, Shen Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201503002
    [2] Maslov A A, Shipyluk A N, Bountin D A, et al. Mach 6 boundary-layer stability experiments on sharp and blunt cones[J]. Journal of Spacecraft and Rockets, 2006, 43(1):71-76. doi: 10.2514/1.15246
    [3] Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. doi: 10.2514/1.29713
    [4] Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1090-1105. doi: 10.2514/1.37431
    [5] Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2):161-167. doi: 10.2514/2.3803
    [6] Iyer P S, Mahesh K. High-speed boundary-layer transition induced by discrete roughness element[J]. Journal of Fluids Mechanics, 2013, 729:524-562. doi: 10.1017/jfm.2013.311
    [7] 罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028

    Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028
    [8] 陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [9] Whitehead A H Jr. NASP aerodynamics[C]//Proc of the 1st National Aerospace Plane Conference. 1989.
    [10] Berry S A, Horvath T J, Hollis B R, et al. X-33 hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2001, 38(5):646-657. doi: 10.2514/2.3750
    [11] Berry S A, Difulvio M, Kowalkowski M K. Forced boundary-layer transition on X-43(Hyper-X) in NASA LaRC 20-inch Mach 6 air tunnel[R]. NASA/TM-2000-210316.
    [12] Berry S A, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934. doi: 10.2514/1.45889
    [13] Borg M P. Laminar instability and transition on the X-51A[D]. West Lafayette, Indiana: Purdue University, 2009.
    [14] 赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学报, 2014, 32(5):623-627. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405009

    Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5):623-627. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405009
    [15] Fujii K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. doi: 10.2514/1.17860
    [16] Tirtey S C, Chazot O, Walpot L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418. doi: 10.1007/s00348-010-0939-4
    [17] Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt bodies with isolated roughness elements in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2010, 47(5):828-835. doi: 10.2514/1.49112
    [18] Wheaton B M, Schneider S P. Hypersonic boundary-layer instabilities due to near-critical roughness[J]. Journal of Spacecraft and Rockets, 2014, 51(1):327-342. doi: 10.2514/1.A32554
    [19] Fiala A, Hillier R, Estruch-Samper D. Roughness-induced turbulent wedges in a hypersonic blunt-body boundary layer[J]. Journal of Fluid Mechanics, 2014, 754(9):208-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM754FLMFLM754S0022112014003887h.xml
    [20] Bernardini M, Pirozzoli S, Orlandi P, et al. Parameterization of boundary-layer transition induced by isolated roughness elements[J]. AIAA Journal, 2014, 52(10):2261-2269. doi: 10.2514/1.J052842
    [21] Borg M P, Schneider S P. Effect of freestream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecrafts and Rockets, 2008, 45(6):1106-1116. doi: 10.2514/1.38005
    [22] van Driest E R, McCauley W D. The effect of controlled three-dimensional roughness on boundary-layer transition at supersonic speeds[J]. Journal of the Aeronautical Sciences, 1960, 27(4):261-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=k0MKVxSMVJipaOihOV6oHTpEfE6tJMHMy3VKHNoh/h8=
    [23] Wheaton B M, Bartkowicz M D, Subbareddy P K, et al. Roughness-induced instabilities at Mach 6: a combined numerical and experimental study[C]//Proc of the 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
    [24] Zhou Y L, Zhao Y F, Xu D, et al. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes[J]. Acta Astronautica, 2016, 127:209-218. doi: 10.1016/j.actaastro.2016.05.027
    [25] 朱德华, 袁湘江, 杨武兵.粗糙元诱导的高超声速转捩机理及应用[J].航空学报, 2018, 39(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801005

    Zhu D H, Yuan X J, Yang W B. Mechanism of hypersonic transition induced by a roughness element and its application[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801005
    [26] Whitehead A H Jr. Flow-field and drag characteristics of several boundary-layer tripping elements in hypersonic flow[R]. NASA TN D-5454, 1969.
    [27] Duan Z W, Xiao Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition[C]//Proc of the 7th AIAA Theoretical Fluid Mechanics Conference. 2014.
    [28] Duan Z W, Xiao Z X, Song F. Direct numerical simulation of hypersonic transition induced by an isolated cylindrical roughness element[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(12):2330-2345. doi: 10.1007/s11433-014-5556-4
    [29] Subbareddy P K, Bartkowicz M D, Candler G V. Direct numerical simulation of high-speed transition due to an isolated roughness element[J]. Journal of Fluid Mechanics, 2014, 748(3):848-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM748FLMFLM748S0022112014002043h.xml
    [30] Danehy P M, Bathel B, Ivey C, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2009.
    [31] Wheaton B M, Schneider S P. Roughness-induced instability in a hypersonic laminar boundary layer[J]. AIAA Journal, 2012, 50(6):1245-1256. doi: 10.2514/1.J051199
    [32] Ye Q Q, Schrijer F, Scarano F. Tomographic PIV measurement of hypersonic boundary layer transition past a micro-ramp[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017.
    [33] Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluid, 2015, 27(6):064105. doi: 10.1063/1.4922389
    [34] Zhao X H, Zhang Q H. Experimental and numerical study of coherent structures in a roughness induced transition boundary layer at Mach 5[J]. Physics of Fluid, 2018, 30:104102. doi: 10.1063/1.5047258
    [35] Jackson A P, Hillier R, Soltani S. Experimental and computational study of laminar cavity flows at hypersonic speeds[J]. Journal of Fluid Mechanics, 2001, 427:329-358. doi: 10.1017/S0022112000002433
    [36] Lawson S J, Barakos G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Science, 2011, 47(3):186-216. doi: 10.1016/j.paerosci.2010.11.002
    [37] Palmer G E, Alter S, Everhart J, et al. CFD validation for short and long cavity flow simulations[C]//Proc of the 39th AIAA Thermophysics Conference. 2007.
    [38] Ohmichi Y, Suzuki K. Study on hypersonic flow over flat plate with channels[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.
    [39] Chang C L, Choudhari M M, Li F, et al. Effects of cavities and protuberances on transition over hypersonic vehicles[C]//Proc of the 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
    [40] Xiao L, Xiao Z, Duan Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150. doi: 10.1016/j.ijheatfluidflow.2014.10.007
    [41] Federov A V, Malmuth N D, Rasheed A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4):605-610. doi: 10.2514/2.1382
    [42] Fedorov A, Shiplyuk A, Maslov A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479:99-124. doi: 10.1017/S0022112002003440
    [43] Fedorov A, Kozlov V, Shiplyuk A, et al. Stability of hypersonic boundary layer on porous wall with regular microstructure[J]. AIAA Journal, 2006, 44(8):1866-1871. doi: 10.2514/1.21013
    [44] Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c2ca832ca33f26c09114620f4202345
    [45] Wagner A, Kuhn M, Schramm J M, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54:1606. doi: 10.1007/s00348-013-1606-3
    [46] Wagner A, Hannemann K, Wartemann V, et al. Hypersonic boundary-layer stabilization by means of ultrasonically absorptive carbon-carbon material, part 1: experimental results[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
    [47] Willems S, Gulhan A. Damping of the second mode instability on a cone in hypersonic flow[C]//Proc of the 7th European Symposium on Aerothermodynamics. 2011.
    [48] Wartemann V, Lüdeke H, Sandham N D. Numerical investigation of hypersonic boundary-layer stabilization by porous surfaces[J]. AIAA Journal, 2012, 50(6):1281-1290. doi: 10.2514/1.J051355
    [49] Lukashevich S V, Morozov S O, Shiplyuk A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location[J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(5):873-878. doi: 10.1134/S002189441605014X
    [50] Wang X W, Zhong X L. The stabilization of a hypersonic boundary layer using local section of porous coating[J]. Physics of Fluids, 2012, 24(3):034105. doi: 10.1063/1.3694808
    [51] Zhao R, Liu T, Wen C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. doi: 10.2514/1.J057272
    [52] Reda D C, Wilder M C, Bogdanoff D W, et al. Transition experiments on blunt bodies with distributed roughness in hypersonic free flight[J]. Journal of Spacecraft and Rockets, 2008, 45(2):210-215. doi: 10.2514/1.30288
    [53] Reda D C, Wilder M C, Prabhu D K. Transition experiments on slightly blunted cones with distributed roughness in hypersonic flight[J]. AIAA Journal, 2012, 50(10):2248-2254. doi: 10.2514/1.J051616
    [54] Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt cones with distributed roughness in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2013, 50(3):504-508. doi: 10.2514/1.A32426
    [55] Wilder M C, Reda D C, Prabhu D K. Effects of distributed surface roughness on turbulent heat transfer augmentation measured in hypersonic free flight[C]//Proc of the 52nd AIAA Aerospace Sciences Meeting. 2014.
    [56] Wilder M C, Reda D C, Prabhu D K. Transition experiments on blunt bodies with distributed roughness in hypersonic free flight in carbon dioxide[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015.
    [57] Irimpan K J, Menezes V, Srinivasan K, et al. Nose-tip transition control by surface roughness on a hypersonic sphere[J]. Journal of Flow Control, Measurement & Visualization, 2018, 6:125-135. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=85742
    [58] Giovanni A D, Stemmer C. Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration[J]. Journal of Fluid Mechanics, 2018, 856:470-503. doi: 10.1017/jfm.2018.706
    [59] 张存波, 罗纪生, 高军.分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响[J].航空动力学报, 2016, 31(5):1234-1241. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201605027

    Zhang C B, Luo J S, Gao J. Effect of distributed roughness on Mach 4.5 boundary-layer transition[J]. Journal of Aerospace Power, 2016, 31(5):1234-1241. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201605027
    [60] 江贤洋, 李存标.高超声速边界层感受性研究综述[J].实验流体力学, 2017, 31(2):1-11. http://www.syltlx.com/CN/abstract/abstract11004.shtml

    Jiang X Y, Li C B. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):1-11. http://www.syltlx.com/CN/abstract/abstract11004.shtml
    [61] Mack L M. Boundary-layer linear stability theory[R]. AGARD Report 709: Special Course on Stability and Transition of Laminar Flow, 1984.
    [62] Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95. doi: 10.1146/annurev-fluid-122109-160750
    [63] Morkovin M V. Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies[R]. AFFDL-TR-68-149, 1969.
    [64] 周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015.

    Zhou H, Su C H, Zhang Y M. Transition mechanism and predication of supersonic/hypersonic boundary layer[M]. Beijing:Science Press, 2015.
    [65] Morkovin M V. On the many faces of transition[M]//Well C S. Viscous drag reduction. New York: Plenum Press, 1969: 1-31.
    [66] Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annu Review of Fluid Mechanics, 2002, 34:291-391. doi: 10.1146/annurev.fluid.34.082701.161921
    [67] Fedorov A V, Khokhlov A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics, 2002, 15(4):231-254. doi: 10.1007/s001620100052
    [68] Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. doi: 10.1146/annurev-fluid-120710-101208
    [69] Kuester M S, White E B. Roughness receptivity and shielding in a flat plate boundary layer[J]. Journal of Fluid Mechanics, 2015, 777:430-460. doi: 10.1017/jfm.2015.267
    [70] Balakumar P. Boundary layer receptivity due to roughness and freestream sound for supersonic flows over axisymmetric cones[C]//Proc of the 38th Fluid Dynamics Conference and Exhibit. 2008.
    [71] Iyer P S, Muppidi S, Mahesh K. Roughness-induced transition in high speed flows[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
    [72] Wang X W, Zhong X L. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. doi: 10.2514/1.37766
    [73] Mistry V I, Page G J, McGuirk J J. Simulation of receptivity and induced transition from discrete roughness elements[J]. Flow, Turbulence and Combustion, 2015, 95(2-3):301-334. doi: 10.1007/s10494-015-9636-y
    [74] Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6):064105. doi: 10.1063/1.4922389
    [75] Qin F F, Wu X S. Response and receptivity of the hypersonic boundary layer past a wedge to free-stream acoustic, vertical and entropy disturbances[J]. Journal of Fluid Mechanics, 2016, 797:874-915. doi: 10.1017/jfm.2016.287
    [76] Tempelmann D, Schrader L U, Hanifi A, et al. Swept wing boundary-layer receptivity to localized surface roughness[J]. Journal of Fluid Mechanics, 2012, 717:516-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c27081df7e589a304bd5450a1e7ade07
    [77] Fedorov A V, Tumin A. Initial-value problem for hypersonic boundary-layer flows[J]. AIAA Journal, 2003, 41(3):379-389. doi: 10.2514/2.1988
    [78] 刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-211. doi: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experiments in hypersonic flows[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-211. doi: 10.7638/kqdlxxb-2018.0017
    [79] Maslov A A, Shiplyuk A N, Sidorenko A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426:73-94. doi: 10.1017/S0022112000002147
    [80] Lee C B, Chen S Y. A review of recent progress in the study of transition in hypersonic boundary layer[J]. National Science Review, 2018, 52:4993540. doi: 10.1093/nsr/nwy052
    [81] Wang X W, Zhong X L. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. doi: 10.2514/1.37766
    [82] Fong K D, Wang X W, Zhong X L. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J]. Computers & Fluids, 2014, 96:350-367. http://www.sciencedirect.com/science/article/pii/S0045793014000164
    [83] Duan L, Wang X W, Zhong X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229(19):7207-7237. doi: 10.1016/j.jcp.2010.06.008
    [84] Duan L, Wang X W, Zhong X L. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness[J]. AIAA Journal, 2013, 51(1):266-270. doi: 10.2514/1.J051643
    [85] Duan L, Zhong X L. A high-order cut-cell method for numerical simulation of three-dimensional hypersonic boundary-layer transition with finite surface roughness[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [86] Balakumar P. Receptivity of hypersonic boundary layers to distributed roughness and acoustic disturbances[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
    [87] Fong K D, Wang X W, Huang Y, et al. Second mode suppression in hypersonic boundary layer by roughness:design and experiments[J]. AIAA Journal, 2015, 53(10):3138-3143. doi: 10.2514/1.J054100
    [88] Moyes A J, Kocian T S, Mullen D, et al. Effects of initial disturbance amplitude on hypersonic crossflow instability[C]//Proc of AIAA Aerospace Sciences Meeting. 2018.
    [89] Reed H L, Perez E, Kuehl J, et al. Verification and validation issues in hypersonic stability and transition prediction[J]. Journal of Spacecraft and Rockets, 2015, 52(1):29-37. doi: 10.2514/1.A32825
    [90] Bippes H. Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J]. Progress of Aerospace Science, 1999, 35(4):363-412. doi: 10.1016/S0376-0421(99)00002-0
    [91] Malik M R, Li F, Chang C L. Crossflow disturbances in three-dimensional boundary layers:nonlinear development, wave interaction and secondary instability[J]. Journal of Fluid Mechanics, 1994, 268:1-36. doi: 10.1017/S0022112094001242
    [92] Malik M R, Li F, Choudhari M M, et al. Secondary instability of crossflow vortices and swept-wing boundary-layer transition[J]. Journal of Fluid Mechanics, 1999, 399:85-115. doi: 10.1017/S0022112099006291
    [93] Chernoray V G, Dovgal A V, Kozlov V V, et al. Experiments on secondary instability of streamwise vortices in a swept-wing boundary layer[J]. Journal of Fluid Mechanics, 2005, 534:295-325. doi: 10.1017/S0022112005004386
    [94] White E B, Saric W S. Secondary instability of crossflow vortices[J]. Journal of Fluid Mechanics, 2005, 525:275-308. doi: 10.1017/S002211200400268X
    [95] 赵耕夫, 徐立.高速三维边界层的横流不稳定性[J].力学学报, 1998, 30(5):521-530. doi: 10.3321/j.issn:0459-1879.1998.05.002

    Zhao G F, Xu L. Crossflows instability of high speed three-dimensional boundary layer[J]. Acta Mechanic Sinica, 1998, 30(5):521-530. doi: 10.3321/j.issn:0459-1879.1998.05.002
    [96] 徐国亮, 符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201673501

    Xu G L, Fu S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201673501
    [97] Reed H L, Saric W S. Stability of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 1989, 21:235-284. doi: 10.1146/annurev.fl.21.010189.001315
    [98] Wassermann P, Kloker M. Mechanisms and passive control of crossflow-vortex-induced transition in three-dimensional boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f2b0a566fd8608af84334df49d6b986
    [99] Bonfigli G, Kloker M. Secondary instability of crossflow vortices:validation of the stability theory by direct numerical simulation[J]. Journal of Fluid Mechanics, 2007, 583:229-272. doi: 10.1017/S0022112007006179
    [100] Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34:291-319. doi: 10.1146/annurev.fluid.34.082701.161921
    [101] Saric W S, Carrillo R B Jr, Reibert M S. Leading-edge roughness as a transition control mechanism[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998.
    [102] Radeztsky R H Jr, Reibert M S, Saric W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11):1370-1377. doi: 10.2514/2.635
    [103] Saric W S, Reed H L, White E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35:413-440. doi: 10.1146/annurev.fluid.35.101101.161045
    [104] Kocian T S, Moyes A J, Reed H L, et al. Hypersonic crossflow instability[C]//Proc of the AIAA Aerospace Sciences Meeting. 2018.
    [105] Craig S A, Saric W S. Crossflow instability in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2016, 808:224-244. doi: 10.1017/jfm.2016.643
    [106] Schuele C Y, Corke T C, Matlis E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. doi: 10.1017/jfm.2012.579
    [107] Corke T, Arndt A, Matlis E, et al. Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness[J]. Journal of Fluid Mechanics, 2018, 856:822-849. doi: 10.1017/jfm.2018.636
    [108] Swanson E O, Schneider S P. Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [109] van den Kroonenberg A, Radespiel R, Candler G, et al. Infrared measurements of boundary-layer transition on an inclined cone at Mach 6[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [110] Chynoweth B C, Ward C A C, Greenwood R T, et al. Measuring transition and instabilities in a Mach 6 hypersonic quiet wind tunnel[C]//Proc of the 44th AIAA Fluid Dynamics Conference. 2014.
    [111] Zhang C H, Tang Q, Lee C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [112] Danehy P M, Ivey C B, Inman J A, et al. High speed PLIF imaging of hypersonic transition over discrete cylindrical roughness element[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [113] 易仕和, 田立丰, 赵玉新.基于NPLS技术的可压缩湍流机理实验研究新进展[J].力学进展, 2011, 41(4):379-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629823

    Yi S H, Tian L F, Zhao Y X. The new advance of the experimental research on compressible turbulence based on the NPLS technique[J]. Advances in Mechanics, 2011, 41(4):379-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629823
    [114] Driver D M. Application of oil-film interferometry skin-friction measurement to large wind tunnels[J]. Experiments in Fluids, 2003, 34(6):717-725. doi: 10.1007/s00348-003-0613-1
    [115] Pailhas G, Barricau P, Touvet Y, et al. Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method[J]. Experiment in Fluids, 2009, 47(2):195-207. doi: 10.1007/s00348-009-0650-5
    [116] Naughton J W, Schabron B, Hind M D, et al. Improved wall shear stress measurements on a supersonic microjet impingement surface[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
    [117] 董昊, 耿玺, 陆纪椿, 等.翼型边界层转捩热/油膜及红外测量技术的对比[J].南京航空航天大学学报, 2013, 45(6):792-796. doi: 10.3969/j.issn.1005-2615.2013.06.009

    Dong H, Geng X, Lu J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796. doi: 10.3969/j.issn.1005-2615.2013.06.009
    [118] Dong H, Liu S C, Geng X, et al. A note on flow characterization of the FX63-137 airfoil at low Reynolds number using oil-film interferometry technique[J]. Physics of Fluid, 2018, 30(10):101701. doi: 10.1063/1.5052233
    [119] 董昊, 史志伟, 陆纪椿, 等.高速边界层转捩的油膜干涉测量技术研究[C]//第五届近代实验空气动力学会议论文集. 2015.

    Dong H, Shi Z W, Lu J C, et al. Investigation of oil film interferometry technology on high speed boundary layer transition[C]//Proc of the 5th Modern Experimental Aerodynamics Conference. 2015.
    [120] Dong H, Liu S C, Geng X, et al. Influence of distributed roughness elements on boundary layer transition for NACA0012 airfoil[J]. Modern Physics Letters B, 2018, 32(29):1850349. doi: 10.1142/S0217984918503499
    [121] 董昊, 刘是成, 杨鲤铭, 等.离散式粗糙元诱导翼型边界层转捩的数值和实验研究[J].南京航空航天大学学报, 2018, 50(6):807-814. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806011.htm

    Dong H, Liu S C, Yang L M, et al. Numerical simulation and experimental investigation on airfoil boundary layer transition induced by discrete roughness elements[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):807-814. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806011.htm
    [122] Dong H, Wang C P, Cheng K M. Experimental and numerical investigation of hypersonic jaws inlet[J]. Modern Physics Letters B, 2010, 24(13):1409-1412. doi: 10.1142/S0217984910023748
    [123] Wagner A, Schülein E, Petervari R, et al. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation[J]. Journal of Fluid Mechanics, 2018, 842:495-531. doi: 10.1017/jfm.2018.132
    [124] 朱志斌, 袁湘江, 陈林.高阶紧致格式并行分区算法[J].计算力学学报, 2015, 32(6):825-830. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201506018

    Zhu Z B, Yuan X J, Chen L. Zone decomposition parallel algorithm of high order compact scheme[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):825-830. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201506018
  • 加载中
图(19)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  132
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-30
  • 修回日期:  2018-12-14
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日