留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自发辐射分析的被动式燃烧诊断技术研究进展

娄春 张鲁栋 蒲旸 张仲侬 李智聪 陈鹏飞

娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1-17. doi: 10.11729/syltlx20200063
引用本文: 娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1-17. doi: 10.11729/syltlx20200063
LOU Chun, ZHANG Ludong, PU Yang, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1-17. doi: 10.11729/syltlx20200063
Citation: LOU Chun, ZHANG Ludong, PU Yang, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1-17. doi: 10.11729/syltlx20200063

基于自发辐射分析的被动式燃烧诊断技术研究进展

doi: 10.11729/syltlx20200063
基金项目: 

国家自然科学基金 51827808

四川省科技计划 2019YJ0293

详细信息
    作者简介:

    娄春(1977-), 男, 重庆人, 教授。研究方向: 燃烧测量与诊断。通信地址: 湖北省武汉市洪山区珞喻路1037号华中科技大学能源与动力工程学院煤燃烧国家重点实验室(430074)。E-mail: Lou_chun@sina.com

    通讯作者:

    娄春, E-mail: Lou_chun@sina.com

  • 中图分类号: TK16

Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation

  • 摘要: 被动式燃烧诊断技术是利用火焰自发射辐射信息进行燃烧诊断的一项技术,具有非接触、对环境要求不高、系统紧凑、易于实施等特点,在燃烧场在线测量及诊断中具有独特优势。首先,分析了各类燃烧诊断技术的优势及局限;其次,结合华中科技大学煤燃烧国家重点实验室开展的被动式燃烧测量诊断研究工作,从火焰发射光谱、火焰图像处理、热辐射成像技术三个方面介绍了自发辐射燃烧诊断技术的基本原理及研究现状,利用这三种技术,可实现燃烧状态定性分析以及燃烧流场中温度、组分体积分数等燃烧关键信息的定量计算;最后,指出了自发辐射燃烧诊断技术的发展趋势,即:获得更丰富的检测信号、更高的检测分辨率和精度以及更多的检测结果。
  • 图  1  火焰发射光谱

    Figure  1.  Emission spectra of flames

    图  2  大气压力下甲烷/空气预混火焰的归一化OH*、CH*和C2*发射强度为当量比的函数[18]

    Figure  2.  Premixed methane/air flame at atmospheric pressure(normalized OH*, CH* and C2* emission as a function of ϕ) [18]

    图  3  天然气与不同体积分数氢气的混合物的发射光谱(当量比为0.7)[19]

    Figure  3.  Emission spectra for blends of natural gas and hydrogen with different volume fractions of H2 and ϕ =0.7[19]

    图  4  乙烯/空气部分预混火焰图像及发射光谱

    Figure  4.  Images and emission spectra at inter-conal zone of ethylene/air partially premixed flame for different equivalence ratios

    图  5  乙烯/空气扩散火焰的温度检测结果

    Figure  5.  Measured temperatures of ethylene/air diffusion flame

    图  6  乙烯/空气扩散火焰的气体组分体积分数检测结果

    Figure  6.  Measured gas volume fraction of ethylene/air diffusion flame

    图  7  气体光谱透射率测量值与理论值的对比

    Figure  7.  Comparison of measured gas spectral transmissivity and theoretical value

    图  8  樟木颗粒燃烧过程中K元素气相体积分数随时间的变化[23]

    Figure  8.  Variation of gaseous phase K volume fraction with time during the combustion of camphorwood pellet [23]

    图  9  反扩散火焰形状的理论计算及实验测量[37]

    Figure  9.  Theoretical calculation and experimental measurement of the shape of inverse diffusion flame [37]

    图  10  静止空气条件下乙烯射流扩散火焰的脉动图像[38]

    Figure  10.  Images of flickering ethylene diffusion flame under static air condition [38]

    图  11  火焰脉动频率及幅值与伴流空气流量的关系[38]

    Figure  11.  Relationship among flickering frequency, amplitude and co-flow oxidizer rate [38]

    图  12  燃气轮机燃烧室不同燃烧状态的火焰动态图像及灰度值[39]

    Figure  12.  Images of flame-dynamic and pixel-intensity signal at different combustion stages in an industrial gas turbine combustor [39]

    图  13  煤粉火焰几何形状参数定义[40]

    Figure  13.  Definitions of the geometrical parameters of a pulverized coal flame [40]

    图  14  不同温度下的黑体辐射图像[6]

    Figure  14.  Images captured from the blackbody furnace with different temperatures [6]

    图  15  柴油机火焰及不同波长组合下计算出的温度图像[41]

    Figure  15.  Diesel flame and temperature calculated with different combinations of two wavelengths [41]

    图  16  彩色摄像机R、G、B波段光谱响应曲线[68]

    Figure  16.  Spectral response curves of the R, G and B bands of the colored CCD camera [68]

    图  17  氧的体积分数增大过程中的乙烯扩散火焰图像及温度图像[43]

    Figure  17.  Images of ethylene diffusion flame and temperature distributions as O2 volume fraction is increased [43]

    图  18  热辐射成像技术应用于炉内三维温度场在线检测的示意图[6]

    Figure  18.  Schematic of thermal radiative imaging technique used for three-dimensional temperature distribution detection in a boiler furnace [6]

    图  19  热辐射成像技术在燃烧装置温度场检测中的应用[53]

    Figure  19.  Applications of thermal radiative imaging technique for temperature field detection in various combustion facilities [53]

    图  20  乙烯扩散火焰图像及其温度与碳烟体积分数分布[68]

    Figure  20.  Images of ethylene diffusion flame, the distributions of temperature T (K) and soot volume fraction (10-6) [68]

    表  1  自由基生成的反应路径的特征波长

    Table  1.   Formation routes of excited radicals and characteristic wavelengths

    Radical Reactions Wavelength/nm
    OH* R1 CH+O2→CO+OH*
    R2 H+O+M→OH*+M 282.9, 308.9
    R3 OH+OH+H→OH*+H2O
    CH* R4 C2H+O2→CO2+CH* 387.1, 431.4
    R5 C2H+O→CO+CH*
    C2* R6 CH2+C→C2*+H2 513.0, 516.5
    下载: 导出CSV
  • [1] 齐飞. 燃烧: 一个不息的话题: 同步辐射单光子电离技术在燃烧研究中的应用[J]. 物理, 2006, 35(1): 1-6. doi: 10.3521/j.issn:0379-4148.2006.01.001

    QI F. Combustion, a never extinguishing topic: Combustion study with synchrotron radiation single-photon ionization technique[J]. Physics, 2006, 35(1): 1-6. doi: 10.3521/j.issn:0379-4148.2006.01.001
    [2] 张平. 燃烧诊断学[M]. 北京: 兵器工业出版社, 1988.
    [3] KOHSE-HÖINGHAUS K, JEFFRIES J B. Applied combus-tion diagnostics[M]. New York: CRC Press, 2002.
    [4] 汪亮. 燃烧实验诊断学[M]. 2版. 北京: 国防工业出版社, 2011.
    [5] 熊姹, 范玮. 应用燃烧诊断学[M]. 西安: 西北工业大学出版社, 2014.
    [6] 娄春. 工程燃烧诊断学[M]. 北京: 中国电力出版社, 2016.
    [7] 刘训臣, 李玉阳, 周忠岳, 等. 光谱法和取样分析法在燃烧诊断研究中的应用[J]. 实验流体力学, 2016, 30(1): 43-54, 67. doi: 10.11729/syltlx20150138

    LIU X C, LI Y Y, ZHOU Z Y, et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 43-54, 67. doi: 10.11729/syltlx20150138
    [8] 李麦亮, 赵永学, 耿辉, 等. 基于光谱测量的燃烧诊断技术[J]. 装备指挥技术学院学报, 2002, 13(4): 32-36. doi: 10.3783/j.issn.1673-0127.2002.4.009

    LI M L, ZHAO Y X, GENG H, et al. Combustion diagnosis technology based on spectroscopy measurements[J]. Journal of the Academy of Equipment Command & Technology, 2002, 13(4): 32-36. doi: 10.3783/j.issn.1673-0127.2002.4.009
    [9] 蔡小舒, 周骛, 杨荟楠, 等. 燃烧与流场在线测量诊断方法研究进展[J]. 实验流体力学, 2014, 28(1): 12-20. doi: 10.11729/syltlx20130069

    CAI X S, ZHOU W, YANG H N, et al. Research advances in the in-line measurement techniques for combustion and flow field[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 12-20. doi: 10.11729/syltlx20130069
    [10] 刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531

    LIU J R, HU Z Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Journal of Optics, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531
    [11] 王海青, 林伟, 仝毅恒, 等. 基于激光的燃烧场温度诊断方法综述[J]. 气体物理, 2020, 5(1): 42-55. doi: 10.19527/j.cnki.2096-1642.0752

    WANG H Q, LIN W, TONG Y H, et al. Review of laser-based temperature diagnosis methods for combustion field[J]. Physics of Gases, 2020, 5(1): 42-55. doi: 10.19527/j.cnki.2096-1642.0752
    [12] 洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43-53, 54. doi: 10.11729/syltlx20160177

    HONG Y J, SONG J L, RAO W, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43-53, 54. doi: 10.11729/syltlx20160177
    [13] CAI W W, KAMINSKI C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 2017, 59: 1-31. doi: 10.1016/j.pecs.2016.11.002
    [14] 宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135

    SONG E Z, LEI Q C, FAN W. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135
    [15] 沈国清. 基于声波理论的炉膛温度场在线监测技术研究[D]. 北京: 华北电力大学, 2007.

    SHEN G Q. The study of on-line measurement technology of furnace temperature field based on acoustic theory[D]. Beijing: North China Electric Power University, 2007. doi: 10.7666/d.y1058352
    [16] 刘石, 陈琪, 李志宏, 等. 多孔介质中燃烧火焰的ECT成像研究[J]. 工程热物理学报, 2008, 29(12): 2164-2166. doi: 10.3521/j.issn:0253-231X.2008.12.051

    LIU S, CHEN Q, LI Z H, et al. ECT imaging of flames in porous material[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2164-2166. doi: 10.3521/j.issn:0253-231X.2008.12.051
    [17] 周怀春. 炉内火焰可视化检测原理与技术[M]. 北京: 科学出版社, 2005.
    [18] DOCQUIER N, CANDEL S. Combustion control and sensors: a review[J]. Progress in Energy and Combustion Science, 2002, 28(2): 107-150. doi: 10.1016/S0360-1285(01)00009-0
    [19] BALLESTER J, GARCÍA-ARMINGOL T. Diagnostic techni-ques for the monitoring and control of practical flames[J]. Progress in Energy and Combustion Science, 2010, 36(4): 375-411. doi: 10.1016/j.pecs.2009.11.005
    [20] GAYDON A G. The spectroscopy of flames[M]. 2nd ed. London: Chapman and Hall, 1974.
    [21] 韩才元. 燃烧测量技术[M]. 武汉: 华中理工大学出版社, 1990.
    [22] 余登美, 张仲侬, 娄春. 空气及富氧气氛下碳氢扩散火焰热辐射的实验研究[J]. 燃烧科学与技术, 2018, 24(5): 458-462. doi: 10.11715/rskxjs.R201804012

    YU D M, ZHANG Z N, LOU C. Experimental investigation on thermal radiation of hydrocarbon diffusion flame in air and oxygen-enriched atmosphere[J]. Journal of Combustion Science and Technology, 2018, 24(5): 458-462. doi: 10.11715/rskxjs.R201804012
    [23] HE Z L, LOU C, FU J T, et al. Experimental investigation on temporal release of potassium from biomass pellet combustion by flame emission spectroscopy[J]. Fuel, 2019, 253: 1378-1384. doi: 10.1016/j.fuel.2019.05.135
    [24] HOSSAIN A, NAKAMURA Y. A numerical study on the ability to predict the heat release rate using CH* chemilumine-scence in non-sooting counterflow diffusion flames[J]. Combustion and Flame, 2014, 161(1): 162-172. doi: 10.1016/j.combustflame.2013.08.021
    [25] WANG H, YOU X Q, JOSHI A V, et al. High-temperature combustion reaction model of H2/CO/C1-C4 compounds[R/OL].[2020-05-09]. http://ignis.usc.edu/USC_Mech_Ⅱ.htm.
    [26] REYNOLDS P M. A review of multicolour pyrometry for temperatures below 1500℃[J]. British Journal of Applied Physics, 1964, 15(5): 579-589. doi: 10.1088/0508-3443/15/5/316
    [27] 戴景民. 多光谱辐射测温理论与应用[M]. 北京: 高等教育出版社, 2002.

    DAI J M. Theory andpractice of multi-spectral thermometry[M]. Beijing: Higher Education Press, 2002.
    [28] 程晓舫, 符泰然, 范学良. 谱色测温原理[J]. 中国科学G辑: 物理学力学天文学, 2004, 34(6): 639-647. doi: 10.3969/j.issn.1674-7275.2004.06.005
    [29] FU T R, TAN P, PANG C H, et al. Fast fiber-optic multi-wavelength pyrometer[J]. Review of Scientific Instruments, 2011, 82(6): 064902. doi: 10.1063/1.3596567
    [30] 郑楚光, 柳朝晖. 弥散介质的光学特性及辐射传热[M]. 武汉: 华中理工大学出版社, 1996.

    ZHENG C G, LIU Z H. Optical properties and radiative heat transfer of dispesed particles[M]. Wuhan: Huazhong Univer-sity of Science and Technology (HUST) Press, 1996.
    [31] SUN Y P, LOU C, ZHOU H C. A simple judgment method of gray property of flames based on spectral analysis and the two-color method for measurements of temperatures and emissivity[J]. Proceedings of the Combustion Institute, 2011, 35(1): 735-741. doi: 10.1016/j.proci.2010.07.042
    [32] MODEST M. Radiative heat transfer[M]. 3rd ed. San Diego: Academic Press, 2013.
    [33] 陈晓斌, 蔡小舒, 范学良, 等. 原子发射双谱线法测火焰温度的实验研究[J]. 光谱学与光谱分析, 2009, 29(12): 3177-3180. doi: 10.3964/j.issn.1000-0593(2009)12-3177-04

    CHEN X B, CAI X S, FAN X L, et al. Experimental study on flame temperature measurement by double line of atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009, 29(12): 3177-3180. doi: 10.3964/j.issn.1000-0593(2009)12-3177-04
    [34] LOU C, CHEN C, SUN Y P, et al. Review of soot measurement in hydrocarbon-air flames[J]. Science China Technological Sciences, 2010, 53(8): 2129-2141. doi: 10.1007/s11431-010-3212-4
    [35] HE X H, LOU C, QIAO Y, et al. In-situ measurement of temperature and alkali metal concentration in municipal solid waste incinerators using flame emission spectroscopy[J]. Waste Management, 2020, 102: 486-491. doi: 10.1016/j.wasman.2019.11.015
    [36] TURNS S R. 燃烧学导论: 概念与应用[M]. 姚强, 李水清, 王宇, 译. 2版. 北京: 清华大学出版社, 2009.

    TURNS S R. An introduction to combustion concepts and applications: concepts and applications[M]. 2nd ed. Translated by YAO Q, LI S Q, WANG Y. Beijing: Tsinghua University Press, 2009.
    [37] 李智聪, 何小煌, 娄春. 乙烯层流反扩散火焰形状的理论计算及实验测量[J]. 燃烧科学与技术, 2020, 26(3): 199-204. doi: 10.11715/rskxjs.R202003006

    LI Z C, HE X H, LOU C. Theoretical calculation and experimental measurement of the shape of ethylene laminar inverse diffusion flame[J]. Journal of Combustion Science and Technology, 2020, 26(3): 199-204. doi: 10.11715/rskxjs.R202003006
    [38] 田艳飞, 孙磊, 娄春. 乙烯扩散火焰脉动特性的实验研究[J]. 工程热物理学报, 2015, 36(7): 1590-1595. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201507042.htm

    TIAN Y F, SUN L, LOU C. Experimental investigations of ethylene diffusion flames flickering characteristics[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1590-1595. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201507042.htm
    [39] NG W B, CLOUGH E, SYED K J, et al. The combined investigation of the flame dynamics of an industrial gas turbine combustor using high-speed imaging and an optically integrated data collection method[J]. Measurement Science and Techno-logy, 2004, 15(11): 2303-2309. doi: 10.1088/0957-0235/15/11/016
    [40] YAN Y, LU G, COLECHIN M. Monitoring and characteri-sation of pulverised coal flames using digital imaging techniques[J]. Fuel, 2002, 81(5): 647-655. doi: 10.1016/S0016-2361(01)00161-2
    [41] 田辛. 用双色法研究内燃机燃烧火焰的温度场及碳烟浓度场[D]. 北京: 清华大学, 2004.

    TIAN X. Study on IC engine flame temperature and soot with two-color method[D]. Beijing: Tsinghua University, 2004.
    [42] 薛飞, 李晓东, 倪明江, 等. 基于面阵CCD的火焰温度场测量方法研究[J]. 中国电机工程学报, 1999, 19(1): 39-41, 66. doi: 10.3521/j.issn:0258-8013.1999.01.010

    XUE F, LI X D, NI M J, et al. Research on temperature field measuring for combustion flame based on plane surface array CCD[J]. Proceedings of the CSEE, 1999, 19(1): 39-41, 66. doi: 10.3521/j.issn:0258-8013.1999.01.010
    [43] ZHANG Y D, LIU F S, LOU C. Experimental and numerical investigations of soot formation in laminar coflow ethylene flames burning in O2/N2 and O2/CO2 atmospheres at different O2 mole fractions[J]. Energy & Fuels, 2018, 32(5): 6252-6263. doi: 10.1021/acs.energyfuels.7b04069
    [44] CHAR J M, YEH J H. The measurement of open propane flame temperature using infrared technique[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 56(1): 135-144. doi: 10.1016/0022-4073(96)00013-1
    [45] 娄春. 煤粉炉内三维温度场及颗粒辐射特性重建[D]. 武汉: 华中科技大学, 2007.

    LOU C. Reconstruction of 3-D temperature distribution and radiative properties of particulates in pulverized-coal-fired boilers furnaces[D]. Wuhan: Huazhong University of Science and Technology, 2007. doi: 10.7666/d.d092964
    [46] ZHOU H C, LOU C, CHENG Q, et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1699-1706. doi: 10.1016/j.proci.2004.08.090
    [47] LOU C, ZHOU H C. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation[J]. Combustion and Flame, 2005, 143(1-2): 97-105. doi: 10.1016/j.combustflame.2005.05.005
    [48] 娄春, 周怀春. 光学厚度对大型炉膛三维温度场重建的影响分析[J]. 中国电机工程学报, 2007, 27(32): 52-56. doi: 10.3521/j.issn:0258-8013.2007.32.010

    LOU C, ZHOU H C. Analysis of effects of optical thickness on reconstruction of three-dimensional temperature in large-scale furnaces[J]. Proceedings of the CSEE, 2007, 27(32): 52-56. doi: 10.3521/j.issn:0258-8013.2007.32.010
    [49] 严建华, 马增益, 王飞, 等. 运用代数迭代技术由火焰图像重建三维温度场[J]. 燃烧科学与技术, 2000, 6(3): 258-261. doi: 10.3521/j.issn:1006-8740.2000.03.016

    YAN J H, MA Z Y, WANG F, et al. Three-dimensional temperature field reconstruction from flame images using algebraic reconstruction technique[J]. Journal of Combustion Science and Technology, 2000, 6(3): 258-261. doi: 10.3521/j.issn:1006-8740.2000.03.016
    [50] 王飞, 马增益, 严建华, 等. 利用火焰图像重建三维温度场的模型和实验[J]. 燃烧科学与技术, 2004, 10(2): 140-145. doi: 10.3521/j.issn:1006-8740.2004.02.009

    WANG F, MA Z Y, YAN J H, et al. Model and experiment for three-dimensional temperature measurement based on flame image[J]. Journal of Combustion Science and Technology, 2004, 10(2): 140-145. doi: 10.3521/j.issn:1006-8740.2004.02.009
    [51] 黄群星, 刘冬, 王飞, 等. 基于截断奇异值分解的三维火焰温度场重建研究[J]. 物理学报, 2007, 56(11): 6742-6748. doi: 10.3521/j.issn:1000-3290.2007.11.096

    HUANG Q X, LIU D, WANG F, et al. Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition[J]. Acta Physica Sinica, 2007, 56(11): 6742-6748. doi: 10.3521/j.issn:1000-3290.2007.11.096
    [52] 刘冬. 弥散介质温度场重建的辐射反问题研究[D]. 杭州: 浙江大学, 2010.

    LIU D. Study on inverse radiation problem of temperature distribution reconstruction in participating medium[D]. Hangzhou: Zhejiang University, 2010.
    [53] 娄春, 周怀春, 吕传新, 等. 电站锅炉炉内三维温度场在线检测与分析[J]. 热能动力工程, 2005, 20(1): 61-64, 107. doi: 10.3969/j.issn.1001-2060.2005.01.016

    LOU C, ZHOU H C, LYU C X, et al. On-line detection and analysis of the three-dimensional temperature field in a utility boiler[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(1): 61-64, 107. doi: 10.3969/j.issn.1001-2060.2005.01.016
    [54] 程强, 周怀春, 娄春, 等. 工业炉三维温度场可视化试验研究[J]. 工业加热, 2005, 34(1): 19-23. doi: 10.3969/j.issn.1002-1639.2005.01.006

    CHENG Q, ZHOU H C, LOU C, et al. Experimental visualization of three-dimensional temperature field in an industrial furnace[J]. Industrial Heating, 2005, 34(1): 19-23. doi: 10.3969/j.issn.1002-1639.2005.01.006
    [55] ZHANG X Y, CHENG Q, LOU C, et al. An improved colorimetric method for visualization of 2-D, inhomogeneous temperature distribution in a gas fired industrial furnace by radiation image processing[J]. Proceedings of the Combustion Institute, 2011, 35(2): 2755-2762. doi: 10.1016/j.proci.2010.06.119
    [56] 邱淑荣, 窦春玉, 娄春, 等. 纵火体燃烧三维温度场检测研究[J]. 火工品, 2013(5): 53-56. doi: 10.3969/j.issn.1003-1480.2013.05.014

    QIU S R, DOU C Y, LOU C, et al. Study on three dimensional temperature field detection of burning incendiary member[J]. Initiators & Pyrotechnics, 2013(5): 53-56. doi: 10.3969/j.issn.1003-1480.2013.05.014
    [57] 闫伟杰, 张向宇, 娄春, 等. 热气机燃烧室内三维温度场可视化实验研究[J]. 工程热物理学报, 2013, 34(10): 1969-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310041.htm

    YAN W J, ZHANG X Y, LOU C, et al. Experimental investigations of visualization of three-dimensional temperature fields in combustion chamber of a stirling engine[J]. Journal of Engineering Thermophysics, 2013, 34(10): 1969-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310041.htm
    [58] 刘建浩, 娄春, 陈晓冰, 等. 基于图像法的玻璃熔窑温度检测实验研究[J]. 玻璃, 2016, 43(6): 3-7. doi: 10.3969/j.issn.1003-1987.2016.06.001

    LIU J H, LOU C, CHEN X B, et al. Experimental research on glass furnace temperature detection based on image method[J]. Glass, 2016, 43(6): 3-7. doi: 10.3969/j.issn.1003-1987.2016.06.001
    [59] HUANG Q X, WANG F, LIU D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156(3): 565-573. doi: 10.1016/j.combustflame.2009.01.001
    [60] XU C L, ZHAO W C, HU J H, et al. Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J]. Fuel, 2017, 196: 550-563. doi: 10.1016/j.fuel.2017.01.115
    [61] HUANG X, QI H, NIU C Y, et al. Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique[J]. Applied Thermal Engineering, 2017, 115: 1357-1347. doi: 10.1016/j.applthermaleng.2016.12.029
    [62] NI M J, ZHANG H D, WANG F, et al. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system[J]. Applied Thermal Engineering, 2016, 96: 421-431. doi: 10.1016/j.applthermaleng.2015.11.116
    [63] WANG F, XIE Z C, YAN J H, et al. Simultaneous measurement of three-dimensional particle temperature, particle concentration, and H2O concentration distributions using multispectral flame images[J]. Combustion Science and Technology, 2017, 189(11): 1891-1906. doi: 10.1080/00102202.2017.1358692
    [64] LIU H W, ZHENG S, ZHOU H C. Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyperspectral tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2): 315-324. doi: 10.1109/tim.2016.2631798
    [65] REN T, MODEST M F, FATEEV A, et al. Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements[J]. Applied Energy, 2019, 252: 113448. doi: 10.1016/j.apenergy.2019.113448
    [66] LOU C, ZHOU H C, YU P F, et al. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2771-2778. doi: 10.1016/j.proci.2006.07.178
    [67] LOU C, LI W H, ZHOU H C, et al. Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 1-8. doi: 10.1016/j.ijheatmasstransfer.2010.10.007
    [68] YAN W J, LOU C. Two-dimensional distributions of temperature and soot volume fraction inversed from visible flame images[J]. Experimental Thermal and Fluid Science, 2013, 50: 229-235. doi: 10.1016/j.expthermflusci.2013.05.013
    [69] 浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000.

    PU R L, GONG P. Hyperspectralremote sensing and its applications[M]. Beijing: Higher Education Press, 2000.
    [70] GHAHRAMANI Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452-459. doi: 10.1038/nature14541
    [71] 李智, 张仲侬, 娄春. 大型燃煤锅炉内辐射熵产及辐射㶲试验研究[J]. 洁净煤技术, 2019, 25(3): 88-93. doi: 10.13226/j.issn.1006-6772.19042201

    LI Z, ZHANG Z N, LOU C. Experimental investigation on radiative entropy generation and radiative exergy in a large coal-fired boiler[J]. Clean Coal Technology, 2019, 25(3): 88-93. doi: 10.13226/j.issn.1006-6772.19042201
    [72] National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Aeronautics and Space Engineering Board, Committee on Advanced Technolo-gies for Gas Turbines. Advanced technologies for gas turbines[M]. Washington, DC: National Academies Press, 2020. doi: 10.17226/25630
    [73] RUAN C, YU T, CHEN F E, et al. Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170: 744-751. doi: 10.1016/j.energy.2018.12.215
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  346
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-07-02
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日