Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests
-
摘要: 介绍了一种在静气弹分析中引入CFD数据进行风洞数据非线性段弹性修正的方法。将多个迎角的CFD数据作为外部气动力引入NASTRAN静气弹分析,计算不同迎角(升力)区间内的气动导数并得到分段弹刚比,积分得到未变形模型的气动特性曲线。对大展弦比翼身组合体模型在不同动压和马赫数下的风洞试验结果进行弹性修正,结果表明:该方法显著提高了升力和力矩曲线非线性段的修正精度;在风洞试验的迎角范围内,与动压外插结果吻合,升力和力矩的最大误差不超过0.015和0.005;不同马赫数和动压下的修正结果表明该方法具有广泛的适用性,能够兼顾效率和精度,具有大规模应用的潜力。Abstract: A correction method for model deformation effects in wind tunnel tests is developed based on NASTRAN static aeroelastic analysis integrated with CFD data. Flexible To Rigid Ratio (FTR) of longitudinal aerodynamic derivatives for different angles of attack are calculated by NASTRAN with CFD correction, which is used to obtain aerodynamic characteristics of the undeformed model. Corrected aerodynamic characteristics of a high-aspect-ratio wingbody model under different circumstances of Mach number and dynamic pressure suggest that the proposed method largely improves the correction in the nonlinear part of CL and Cm curve. A minor discrepancy exists between corrected data and extrapolated results at different dynamic pressures, which is at most 0.015 for CL and 0.005 for Cm respectively. Moreover, the method is robust enough to gain accurate corrected results under different circumstances and efficient enough for large scale application in aircraft design.
-
表 1 计算模型与风洞测量变形结果对比
Table 1. Comparison of displacement and rotation between NASTRAN model and wind tunnel measurement
翼尖变形 风洞测量 计算模型 误差 位移/mm 11.2592 10.4803 0.7789 扭转角/(°) −0.9240 −0.8255 0.0984 表 2 Ma = 0.85工况下CL – α曲线修正误差
Table 2. Deviation of corrected CL – α curve at Ma = 0.85
q/E =
0.38 × 10−6Ave. ΔCL Advantage Max ΔCL Advantage Fixed KCL 0.0075 — 0.0245 — Piecewise KCL 0.0055 −26.7% 0.0137 −44.2% 表 3 Ma = 0.80工况下CL – α曲线修正误差
Table 3. Deviation of corrected CL–α curve at Ma=0.80
q/E =
0.36 × 10−6Ave. ΔCL Advantage Max ΔCL Advantage Fixed KCL 0.0047 — 0.0153 — Piecewise KCL 0.0043 −8.9% 0.0108 −29.7% 表 4 Ma = 0.85工况下Cm – α曲线修正误差
Table 4. Deviation of corrected Cm – α curve at Ma = 0.85
q/E =
0.38 × 10−6Ave. ΔCm Advantage Max ΔCm Advantage Fixed KCm 0.0030 — 0.0174 — Piecewise KCm 0.0014 −53.7% 0.0043 −75.5% 表 5 Ma=0.80工况下Cm–α曲线修正误差
Table 5. Deviation of corrected Cm–α curve at Ma=0.80
q/E =
0.38 × 10−6Ave. ΔCm Advantage Max ΔCm Advantage Fixed KCm 0.0021 — 0.0061 — Piecewise KCm 0.0018 −12.0% 0.0050 −18.1% 表 6 Ma = 0.85工况下的弹性修正一致性
Table 6. Consistency of elastic correction at Ma = 0.85
Ave. ΔCL Max ΔCL Ave. ΔCm Max ΔCm Discrepancy 0.0030 0.0078 0.0008 0.0024 表 7 计算步骤表
Table 7. Main procedure of correction
编号 计算步骤 计算资源 每个算例
耗时1 CFD计算,迎角0°、2°、3°、4°、5°,
多重网格计算5000步16核CPU工作站 4 h 2 CFD数据映射至气动面元 移动工作站 5 min 3 生成各迎角(升力)区间修正矩阵 移动工作站 5 min 4 NASTRAN静气弹分析 移动工作站 5 min -
[1] KEYE S, RUDNIK R. Aero-elastic simulation of DLR’s F6 transport aircraft configuration and comparison to experimental data[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 580. doi: 10.2514/6.2009-580 [2] 刘大伟, 熊贵天, 刘洋, 等. 宽体客机高速风洞试验数据修正方法[J]. 航空学报, 2019, 40(2): 16–31. doi: 10.7527/S1000-6893.2018.22205LIU D W, XIONG G T, LIU Y, et al. Method of test data correction for wide-body aircraft in high speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 16–31. doi: 10.7527/S1000-6893.2018.22205 [3] BENEDICT K A, HEDGES L, ROBINSON A, et al. Inclusion of aeroelastic twist into the CFD analysis of the twin-engine NASA common research model[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 0251. doi: 10.2514/6.2014-0251 [4] KEYE S, BRODERSEN O, RIVERS M B. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4): 1323–1330. doi: 10.2514/1.C032598 [5] RIVERS M, HUNTER C, CAMPBELL R. Further investigation of the support system effects and wing twist on the NASA common research model[C]//Proc of the 30th AIAA Applied Aerodynamics Conference. 2012: 3209. doi: 10.2514/6.2012-3209 [6] YASUE K, SAWADA K. CFD-aided evaluation of Reynolds number scaling effect accounting for static model deformation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(5): 321–331. doi: 10.2322/tjsass.55.321 [7] BALLMANN J. Experimental Analysis of high Reynolds Number structural Dynamics in ETW[C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibition. 2008: 841. doi: 10.2514/6.2008-841 [8] BIANCOLINI M E, CELLA U, GROTH C, et al. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating[J]. Journal of Aerospace Engineering, 2016, 29(6): 04016061. doi: 10.1061/(asce)as.1943-5525.0000627 [9] CELLA U, BIANCOLINI M E. Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes[J]. Journal of Aircraft, 2012, 49(2): 407–414. doi: 10.2514/1.C031293 [10] VRCHOTA P, PRACHAŘ A. Using wing model deformation for improvement of CFD results of ESWIRP project[J]. CEAS Aeronautical Journal, 2018, 9(2): 361–372. doi: 10.1007/s13272-018-0286-3 [11] 王艺坤, 史爱明. 机翼风洞试验模型CFD静气动弹性修正研究[J]. 科学技术与工程, 2012, 12(15): 3685–3688. doi: 10.3969/j.issn.1671-1815.2012.15.032WANG Y K, SHI A. Static aeroelastic correction for wind tunnel results of wing model with CFD[J]. Science Technology and Engineering, 2012, 12(15): 3685–3688. doi: 10.3969/j.issn.1671-1815.2012.15.032 [12] 夏生林, 赵利霞, 唐克兵, 等. CFD技术在静气动弹性修正计算中的研究与应用[C]// 第十一届全国空气弹性学术交流会会议论文集. 2009: 310-315.XIA S L, ZHAO L X, TANG K B, et al. The investigation and application of the technique of CFD simulation to static aeroelasticity correction[C]//Proc of the 11th Academic Conference of Aeroelasticity. 2009: 310-315. [13] LIU D W, XU X, LI Q, et al. Ispravak učinaka deformacije modela za superkritično krilo u transoničkom vjetrenom tunelu[J]. Tehnicki Vjesnik, 2017, 24(6): 1647–1655. doi: 10.17559/tv-20160525142932 [14] 孙岩, 张征宇, 邓小刚, 等. 风洞模型静弹性变形对气动力影响研究[J]. 空气动力学学报, 2013, 31(3): 294–300. doi: 10.3969/j.issn.1672-9897.2011.03.013SUN Y, ZHANG Z Y, DENG X G, et al. Static aeroelastic effects of wind tunnel model on aerodynamic forces[J]. Acta Aerodynamica Sinica, 2013, 31(3): 294–300. doi: 10.3969/j.issn.1672-9897.2011.03.013 [15] SUN Y, WANG Y T, RONCH A, et al. A fast correction method of model deformation effects in wind tunnel tests[J]. Aerospace, 2018, 5(4): 125. doi: 10.3390/aerospace5040125 [16] GIBSON T. Investigation of wind tunnel model deformation under high Reynolds number aerodynamic loading[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibition. 2002: 424. doi: 10.2514/6.2002-424 [17] 赵卓林, 张家齐, 徐港, 等. 一种基于CFD的增压风洞试验数据刚体修正方法[J]. 飞机设计, 2019, 39(6): 31–34. doi: 10.19555/j.cnki.1673-4599.2019.06.007ZHAO Z L, ZHANG J Q, XU G, et al. A correction study on pressurized wind tunnel results based on CFD[J]. Aircraft Design, 2019, 39(6): 31–34. doi: 10.19555/j.cnki.1673-4599.2019.06.007 [18] GIESING J P, KALMAN T P, RODDEN W P. Correction factory techniques for improving aerodynamic prediction methods[R]. NASA-CR-144967, 1976. [19] WIESEMAN C D. Methodology for matching experimental and computational aerodynamic data[R]. NASA-TM-100592, 1988. [20] 严德, 杨超, 万志强. 应用气动力修正技术的静气动弹性发散计算[J]. 北京航空航天大学学报, 2007, 33(10): 1146–1149. doi: 10.3969/j.issn.1001-5965.2007.10.004YAN D, YANG C, WAN Z Q. Static Aeroelastic divergence analysis by introducing correction techniques of aerodynamic data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1146–1149. doi: 10.3969/j.issn.1001-5965.2007.10.004 [21] MORENO R, NARISETTI R, VON KNOBLAUCH F, et al. A modification to the enhanced correction factor technique to correlate with experimental data[C]//Proc of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015: 1421. doi: 10.2514/6.2015-1421 -