A concise method of determining critical flutter wind speeds for small damping modes
-
摘要: 在低速颤振试验中,小阻尼型颤振模型发生等幅振动的起始风速通常较低,也没有明显的颤振发散现象,采用目测或基于常规模态参数识别的“阻尼法”判定颤振临界风速具有一定的不确定性。针对此问题,根据小阻尼模态颤振试验与抖振试验具有相似的振动现象,提出一种与确定抖振边界类似的“振幅拐点法”来判定颤振临界风速。该方法以振动幅值的均方根值为基础,绘制归一化振动均方根值随风速的变化曲线,以曲线首个拐点对应的风速值为颤振临界风速。将该方法应用于某小阻尼模态颤振试验的发动机挂架变参数据处理,并将处理结果与数值计算结果、阻尼法处理的试验结果进行了对比,结果表明:振幅拐点法与数值计算、阻尼法处理得到的结果规律一致,振幅拐点法得到的结果更接近计算结果,具有简明可靠、稳定性好、适用性强的特点。Abstract: In low speed flutter tests, flutter models with small damping modes start continuous vibration usually at low speeds without obvious flutter divergence. Therefore, it’s of some uncertainty on determing the critical flutter wind speeds by visual inspection or by “damping method (DM)” of modal parameter identification. Considering the similarity between the vibration phenomenon of a small damping modal flutter test and that of a fighter buffet test, a technique named “amplitude turning point method (ATPM)” similarly to that used in identifying buffet boundaries is proposed to determine the critical flutter wind speeds. The method is based on RMS of vibration amplitudes, the curves of normalized vibration RMS changing with wind speeds are drawn, and critical flutter wind speeds are determined according to the first turning points of curves. In a small damping modal flutter test, the method was applied in the test data processing of the engine hangers with variable parameters. Comparing the ATPM results with the DM results and the numerical results, the following conclusions are made: the results of three methods are in agreement, the ATPM results are more similar to the numerical results than the DM results, and the ATPM is concise and reliable, with good stability and applicability.
-
表 1 颤振临界风速计算与试验结果对比
Table 1. Comparison between numerical and test results on determining critical flutter wind speeds
发动机挂架刚度 计算结果/(m·s–1) 试验结果/(m·s–1) Nastran 阻尼法 振幅拐点法 50% 18.8 22.4 21.9 80% 25.9 25.5 25.5 100%(基准) 29.7 28.6 28.6 120% 33.3 30.6 30.6 -
[1] 俱利锋,梁坤鹏,梁海州,等. 颤振边界预测技术在颤振试飞中的应用研究[J]. 飞行力学,2010,28(5):79-83. doi: 10.13645/j.cnki.f.d.2010.05.015JU L F,LIANG K P,LIANG H Z,et al. Application to flut-ter boundary prediction in flight test[J]. Flight Dynamics,2010,28(5):79-83. doi: 10.13645/j.cnki.f.d.2010.05.015 [2] 谭冬梅,姚三,瞿伟廉. 振动模态的参数识别综述[J]. 华中科技大学学报(城市科学版),2002,19(3):73-78.TAN D M,YAO S,QU W L. State of modal parameter identification[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition),2002,19(3):73-78. [3] 王卫华. 模态参数识别方法及应用研究[D]. 长沙: 国防科学技术大学, 2007.WANG W H. Investigation on the modal parameters identifi-cation method and its application[D]. Changsha: National University of Defense Technology, 2007. [4] 陈为真. 大型结构振动信号处理与模态参数识别研究[D]. 武汉: 华中科技大学, 2010.CHEN W Z. Large structural systems with vibration signal processing and modal parameter identification research[D]. Wuhan: Huazhong University of Science and Technology, 2010. [5] 张伟伟,于俊杰,全景阁,等. 一种基于亚临界响应的颤振边界预测新方法[J]. 航空工程进展,2012,3(4):390-396. doi: 10.16615/j.cnki.1674-8190.2012.04.007ZHANG W W,YU J J,QUAN J G,et al. A new flutter prediction method based on a structural response at sub-critical speed[J]. Advances in Aeronautical Science and Engineering,2012,3(4):390-396. doi: 10.16615/j.cnki.1674-8190.2012.04.007 [6] 伍波,王骑,李志国,等. 颤振临界风速计算值与试验值的一致性[J]. 西南交通大学学报,2018,53(3):517-524. doi: 10.3969/j.issn.0258-2724.2018.03.012WU B,WANG Q,LI Z G,et al. Consistency between calculated and tested values of critical flutter speed of flat box girder[J]. Journal of Southwest Jiaotong University,2018,53(3):517-524. doi: 10.3969/j.issn.0258-2724.2018.03.012 [7] 许福友,陈艾荣,张哲,等. 确定桥梁模型颤振临界风速的实用方法[J]. 振动与冲击,2008,27(12):97-100,111,182. doi: 10.13465/j.cnki.jvs.2008.12.018XU F Y,CHEN A R,ZHANG Z,et al. Practical technique for determining critical flutter wind speed of bridge model[J]. Journal of Vibration and Shock,2008,27(12):97-100,111,182. doi: 10.13465/j.cnki.jvs.2008.12.018 [8] 聂建华,司伟. 一种基于振动信号处理的颤振预报方案研究[J]. 工业仪表与自动化装置,2009(4):57-59,71. doi: 10.3969/j.issn.1000-0682.2009.04.016NIE J H,SI W. The method for prediction of chatter based onthe vibration signal processing[J]. Industrial Instrumentation& Automation,2009(4):57-59,71. doi: 10.3969/j.issn.1000-0682.2009.04.016 [9] 盖相宇. 大跨径悬索桥软颤振临界风速确定方法[D]. 西安: 长安大学, 2019.GAI X Y. Method for determining the critical wind speed of long-span suspension bridges under post flutter[D]. Xi’an: Chang’an University, 2019. [10] 牟让科,杨永年. 飞机抖振问题研究进展[J]. 应用力学学报,2001,18(S1):142-150.MU R K,YANG Y N. Advances of studies for the buffet pro-blem of aircraft[J]. Chinese Journal of Applied Mechanics,2001,18(S1):142-150. [11] 陈德成,姜节胜. 随机减量技术的方法与理论[J]. 振动与冲击,1984,3(4):31-40. doi: 10.13465/j.cnki.jvs.1984.04.004CHEN D C,JIANG J S. Method and theory of random decrement technique[J]. Journal of Vibration and Shock,1984,3(4):31-40. doi: 10.13465/j.cnki.jvs.1984.04.004 [12] 聂雪媛,丁桦. 基于随机减量技术的模态参数识别方法探讨[J]. 机械设计,2012,29(8):1-5. doi: 10.13841/j.cnki.jxsj.2012.08.015NIE X Y,DING H. Discussion on modal parameter identifi-cation method based on random decrement technique[J]. Journal of Machine Design,2012,29(8):1-5. doi: 10.13841/j.cnki.jxsj.2012.08.015 -