Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow
-
摘要: 横向射流流场中各种涡结构的运动对射流轨迹变化和标量混合有着决定性影响,但目前对输运过程中剪切层涡的高频动态特性的相关研究仍然缺乏。本文基于40 kHz高频粒子图像测速技术(Particle Image Velocimetry,PIV)和20 kHz激光诱导荧光(Acetone Planner Laser Induced Fluorescence,Acetone PLIF)研究了不同直径喷嘴在不同速度比下的横向射流高频动态流场特征和标量场浓度分布规律及湍流细微结构的形成、破碎过程。速度场和标量场的实验测量表明增大速度比对回流区的生长起促进作用;通过拟合得到了射流轨迹、速度分布及剪切层涡运动轨迹方程,射流速度沿轨迹呈指数型下降;剪切层涡强度与涡运动频率也呈下降趋势,且迎风侧剪切层涡运动频率略低于背风侧;随着射流速度增大,剪切层涡运动频率逐渐增大,斯特劳哈尔数降低。Abstract: Despite the decisive influence of various vortex structures of a jet in crossflow on the jet trajectory and scalar mixing, there are few studies related to the high-frequency dynamic characteristics of shear-layer vortexes during transportation. This paper focuses on the high-frequency flow field characteristic, the scalar concentration distribution and the formation and collapse process of the turbulent microstructure of the jet in crossflow with different nozzle diameters and velocity ratios using 40 kHz particle image velocimetry(PIV) and 20 kHz acetone planar laser induced fluorescence(PLIF). The experimental measurements of the velocity and scalar field show that: increasing the velocity ratio promotes the expansion of the circulation zone behind the jet; in the near field of the jet trajectory, power law fitted velocity distribution and shear-layer vortex trajectory shows an exponentially decrease of the jet velocity, the shear-layer vortex strength and vortex motion frequency also show a downward trend, with the frequency of the shear-layer vortex on the windward side slightly lower than that on the leeward side; as the jet velocity increases, the frequency of the shear-layer vortex increases gradually, but the Strouhal number decreases.
-
Key words:
- jet in crossflow /
- PIV /
- acetone PLIF /
- shear layer vortex /
- flow field characteristic
-
表 1 实验工况
Table 1. Experimental cases
测量方法 Case 喷嘴直径
d /mm射流密度
ρj /(kg·m–3)射流速度
vj /(m·s–1)速度比
r=vj /u∞主流速度
u∞ /(m·s–1)主流密度
ρ∞ /(kg·m–3)PIV 0~6 5 1.293 16.8 6~12 2.80~1.40 1.293 7 4 1.293 25.0 6 4.20 1.293 8 5 1.293 25.0 6 4.20 1.293 9 6 1.293 25.0 6 4.20 1.293 丙酮PLIF 10 4 1.662 2.0 0.82 2.44 1.293 11 4 2.054 5.0 2.00 2.44 1.293 12 4 1.665 10.0 4.10 2.44 1.293 -
[1] YUEN C H N,MARTINEZ-BOTAS R F. Film cooling characteristics of a single round hole at various streamwise angles in a crossflow: Part I effectiveness[J]. International Journal of Heat and Mass Transfer,2003,46(2):221-235. doi: 10.1016/S0017-9310(02)00274-0 [2] 吴里银,张扣立,李晨阳,等. 超声速气流中液体横向射流空间振荡分布建模[J]. 实验流体力学,2018,32(4):20-30. doi: 10.11729/syltlx20170172WU L Y,ZHANG K L,LI C Y,et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):20-30. doi: 10.11729/syltlx20170172 [3] 陈亮,乐嘉陵,宋文艳,等. 超声速冷态流场液体射流雾化实验研究[J]. 实验流体力学,2011,25(2):29-34,40. doi: 10.3969/j.issn.1672-9897.2011.02.006CHEN L,LE J L,SONG W Y,et al. Experimental investigation of liquid jets atomization in supersonic cold crossflow[J]. Journal of Experiments in Fluid Mechanics,2011,25(2):29-34,40. doi: 10.3969/j.issn.1672-9897.2011.02.006 [4] KARAGOZIAN A R. The jet in crossflow[J]. Physics of Fluids,2014,26(10):101303. doi: 10.1063/1.4895900 [5] FRIC T F,ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics,1994,279:1-47. doi: 10.1017/s0022112094003800 [6] KARAGOZIAN A R. Transverse jets and their control[J]. Progress in Energy and Combustion Science,2010,36(5):531-553. doi: 10.1016/j.pecs.2010.01.001 [7] CAMUSSI R,GUJ G,STELLA A. Experimental study of a jet in a crossflow at very low Reynolds number[J]. Journal of Fluid Mechanics,2002,454:113-144. doi: 10.1017/s0022112001007005 [8] GUTMARK E J,IBRAHIM I M,MURUGAPPAN S. Dynamics of single and twin circular jets in cross flow[J]. Experiments in Fluids,2011,50(3):653-663. doi: 10.1007/s00348-010-0965-2 [9] HAVEN B A,KUROSAKA M. Kidney and anti-kidney vortices in crossflow jets[J]. Journal of Fluid Mechanics,1997,352:27-64. doi: 10.1017/s0022112097007271 [10] SALEWSKI M, STANKOVIC D, FUCHS L, et al. Coherent structures in circular and non-circular jets in crossflow[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-907 [11] HARRIS E W. Structure, mixing, and dynamics of controlled single and coaxial jets in crossflow[D]. Los Angeles: University of California, 2020. [12] CAMBONIE T,GAUTIER N,AIDER J L. Experimental study of counter-rotating vortex pair trajectories induced by a round jet in cross-flow at low velocity ratios[J]. Experiments in Fluids,2013,54(3):1475. doi: 10.1007/s00348-013-1475-9 [13] KEFFER J F,BAINES W D. The round turbulent jet in a cross-wind[J]. Journal of Fluid Mechanics,1963,15(4):481-496. doi: 10.1017/s0022112063000409 [14] BROADWELL J E,BREIDENTHAL R E. Structure and mixing of a transverse jet in incompressible flow[J]. Journal of Fluid Mechanics,1984,148:405-412. doi: 10.1017/s0022112084002408 [15] HASSELBRINK E F,MUNGAL M G. Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets[J]. Journal of Fluid Mechanics,2001,443:1-25. doi: 10.1017/S0022112001005146 [16] SMITH S H, MUNGAL M G. Mixing, structure and scaling of the jet in crossflow[J]. Journal of Fluid Mechanics, 1998, 357: 83-122. DOI: 10.1017/s0022112097007891 [17] MARGASON R J. Fifty years of jet in cross flow research[C]//Proceedings of the AGARD Symposium on Computational and Experimental Assessment of Jets in Crossflow. 1993: 1–141. [18] KAMOTANI Y,GREBER I. Experiments on a turbulent jet in a cross flow[J]. AIAA Journal,1972,10(11):1425-1429. doi: 10.2514/3.50386 [19] KELSO R M,LIM T T,PERRY A E. An experimental study of round jets in cross-flow[J]. Journal of Fluid Mechanics,1996,306:111-144. doi: 10.1017/s0022112096001255 [20] LIM T T,NEW T H,LUO S C. On the development of large-scale structures of a jet normal to a cross flow[J]. Physics of Fluids,2001,13(3):770-775. doi: 10.1063/1.1347960 [21] HUANG R F,LAN J. Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet[J]. Physics of Fluids,2005,17(3):034103. doi: 10.1063/1.1852575 [22] GETSINGER D. Shear layer instabilities and mixing in variable density transverse jet flows[D]. Los Angeles: University of California, 2012. [23] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报,2020,38(3):413-431,478. doi: 10.7638/kqdlxxb-2020.0015LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica,2020,38(3):413-431,478. doi: 10.7638/kqdlxxb-2020.0015 [24] LIU C Q,GAO Y S,DONG X R,et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. Journal of Hydrodynamics,2019,31(2):205-223. doi: 10.1007/s42241-019-0022-4 [25] WANG Y Q,GAO Y S,LIU C Q. Galilean invariance of Rortex[J]. Physics of Fluids,2018,30(11):111701. doi: 10.1063/1.5058939 [26] GEVORKYAN L. Structure and mixing characterization of variable density transverse jet flows[D]. Los Angeles: University of California, 2015. [27] YUAN L L,STREET R L,FERZIGER J H. Large-eddy simulations of a round jet in crossflow[J]. Journal of Fluid Mechanics,1999,379:71-104. doi: 10.1017/s0022112098003346 [28] ALTAHARWAH Y A,HUANG R F,HSU C M. Flow and mixing characteristics of a forward-inclined stack-issued jet in crossflow[J]. International Journal of Heat and Fluid Flow,2020,82:108549. doi: 10.1016/j.ijheatfluidflow.2020.108549 [29] DAI C,JIA L,ZHANG J,et al. On the flow structure of an inclined jet in crossflow at low velocity ratios[J]. International Journal of Heat and Fluid Flow,2016,58:11-18. doi: 10.1016/j.ijheatfluidflow.2015.12.001 [30] ZHAO M J,LI Q L,YE T H. Investigation of an optimal pulsed jet mixing and combustion in supersonic crossflow[J]. Combustion and Flame,2021,227:186-201. doi: 10.1016/j.combustflame.2021.01.005 -