留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向射流动态流场特征的高帧频实验研究

王震 王雅瑶 刘训臣

王震, 王雅瑶, 刘训臣. 横向射流动态流场特征的高帧频实验研究[J]. 实验流体力学, 2023, 37(6): 1-14 doi: 10.11729/syltlx20210077
引用本文: 王震, 王雅瑶, 刘训臣. 横向射流动态流场特征的高帧频实验研究[J]. 实验流体力学, 2023, 37(6): 1-14 doi: 10.11729/syltlx20210077
WANG Z, WANG Y Y, LIU X C. Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 1-14 doi: 10.11729/syltlx20210077
Citation: WANG Z, WANG Y Y, LIU X C. Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 1-14 doi: 10.11729/syltlx20210077

横向射流动态流场特征的高帧频实验研究

doi: 10.11729/syltlx20210077
基金项目: 国家自然科学基金项目(52076137,91941301);上海市自然科学基金项目(21ZR1431300)
详细信息
    作者简介:

    王震:(1998—),男,河北石家庄人,硕士研究生。研究方向:激光燃烧诊断。通信地址:上海市闵行区东川路800号上海交通大学闵行校区机械与动力工程学院激光燃烧诊断实验室(200240)。E-mail:120020910140@sjtu.edu.cn

    通讯作者:

    E-mail:liuxunchen@sdust.edu.cn(现工作单位为山东科技大学机械电子工程学院)

  • 中图分类号: V211.71;O358

Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow

  • 摘要: 在横向射流流场中,各种涡结构运动对射流轨迹变化和标量混合有着决定性影响,但目前仍然缺乏输运过程中剪切层涡高频动态特性的相关研究。本文基于40 kHz高频粒子图像测速(Particle Image Velocimetry, PIV)技术和20 kHz丙酮平面激光诱导荧光(Acetone Planar Laser Induced Fluorescence, Acetone PLIF)技术研究了不同直径喷嘴、不同速度比下的横向射流高频动态流场特征和标量场浓度分布规律,以及湍流细微结构的形成和破碎过程。速度场和标量场的实验测量表明增大速度比对回流区的生长起促进作用;通过拟合得到了射流轨迹、速度分布及剪切层涡运动轨迹方程,射流速度沿轨迹呈指数下降,剪切层涡强度与涡运动频率也呈下降趋势,且迎风侧剪切层涡运动频率略低于背风侧;随着射流速度增大,剪切层涡运动频率逐渐增大,斯特劳哈尔数降低。
  • 图  1  横向射流结构示意图[5]

    Figure  1.  Schematic illustration of the JICF[5]

    图  2  横向射流实验装置

    Figure  2.  The set-up of jet in crossflow

    图  3  高速激光诊断系统示意图及测量时序

    Figure  3.  Schematic of high-speed laser diagnostic system and the time series

    图  4  r = 6时5 mm喷嘴PIV瞬态图像

    Figure  4.  Instantaneous PIV images with 5 mm nozzle of r = 6

    图  5  不同速度比、喷嘴直径5 mm下的射流平均速度、垂直速度分量和水平速度分量

    Figure  5.  Mean velocity, vertical velocity component and horizontal velocity component with 5 mm nozzle of different velocity ratios

    图  6  回流区面积与速度比的关系

    Figure  6.  The relationship between reverse flow region and the velocity ratio

    图  7  拟合曲线与轨迹方程

    Figure  7.  Fitting curves and trajectory equations

    图  8  轨迹拟合曲线

    Figure  8.  The trajectory fitting curves

    图  9  坐标系转化

    Figure  9.  Coordinate system conversion

    图  10  不同喷嘴直径下射流沿中心线和垂线方向的速度变化

    Figure  10.  The velocity profiles along the jet centerline and perpendi-cular to the jet centerline with different diameter nozzles

    图  11  瞬时涡量场和剪切层涡轨迹

    Figure  11.  Instantaneous vorticity field and the trajectory of shear layer vortex

    图  12  不同速度比下的剪切层涡平均强度和涡强度沿轨迹的定量演化

    Figure  12.  The average strength of the shear layer vortex and the quantitative evolutions of shear layer vortex strength along the trajectory with different velocity ratios

    图  13  不同速度比下的剪切层涡运动频率分布

    Figure  13.  The main frequency of the shear layer vortex with different velocity ratios

    图  14  不同速度比下的剪切层涡运动频率

    Figure  14.  The frequency of the shear layer vortex with different velocity ratios

    图  15  瞬态相对浓度场

    Figure  15.  Instantaneous relative concentration field

    图  16  射流中心线及垂线上的相对浓度变化

    Figure  16.  The relative concentration profiles along the jet centerline and perpendicular to the jet centerline

    图  17  剪切层涡结构及其发展过程

    Figure  17.  The structure and development processing of the shear layer vortex

    图  18  功率谱密度

    Figure  18.  Power spectral density

    图  19  剪切层涡特征频率与斯特劳哈尔数

    Figure  19.  The characteristic frequency of the shear layer vortex and Strouhal number

    表  1  实验工况

    Table  1.   Experimental cases

    测量方法Case喷嘴直径
    d/mm
    射流密度
    ρj/(kg·m−3)
    射流速度
    vj/(m·s−1)
    速度比
    r = vj/u
    主流速度
    u/(m·s−1)
    主流密度
    ρ/(kg·m−3)
    PIV
    0~6 5 1.293 16.8 6~12 2.80~1.40 1.293
    7 4 1.293 25.0 6 4.20 1.293
    8 5 1.293 25.0 6 4.20 1.293
    9 6 1.293 25.0 6 4.20 1.293
    丙酮PLIF
    10 4 1.662 2.0 0.82 2.44 1.293
    11 4 2.054 5.0 2.00 2.44 1.293
    12 4 1.665 10.0 4.10 2.44 1.293
    下载: 导出CSV
  • [1] YUEN C H N, MARTINEZ-BOTAS R F. Film cooling characteristics of a single round hole at various streamwise angles in a crossflow: Part I effectiveness[J]. International Journal of Heat and Mass Transfer, 2003, 46(2): 221–235. doi: 10.1016/S0017-9310(02)00274-0
    [2] 吴里银, 张扣立, 李晨阳, 等. 超声速气流中液体横向射流空间振荡分布建模[J]. 实验流体力学, 2018, 32(4): 20–30. doi: 10.11729/syltlx20170172

    WU L Y, ZHANG K L, LI C Y, et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 20–30. doi: 10.11729/syltlx20170172
    [3] 陈亮, 乐嘉陵, 宋文艳, 等. 超声速冷态流场液体射流雾化实验研究[J]. 实验流体力学, 2011, 25(2): 29–34, 40. doi: 10.3969/j.issn.1672-9897.2011.02.006

    CHEN L, LE J L, SONG W Y, et al. Experimental investigation of liquid jets atomization in supersonic cold crossflow[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 29–34, 40. doi: 10.3969/j.issn.1672-9897.2011.02.006
    [4] KARAGOZIAN A R. The jet in crossflow[J]. Physics of Fluids, 2014, 26(10): 101303. doi: 10.1063/1.4895900
    [5] FRIC T F, ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics, 1994, 279: 1–47. doi: 10.1017/s0022112094003800
    [6] KARAGOZIAN A R. Transverse jets and their control[J]. Progress in Energy and Combustion Science, 2010, 36(5): 531–553. doi: 10.1016/j.pecs.2010.01.001
    [7] CAMUSSI R, GUJ G, STELLA A. Experimental study of a jet in a crossflow at very low Reynolds number[J]. Journal of Fluid Mechanics, 2002, 454: 113–144. doi: 10.1017/s0022112001007005
    [8] GUTMARK E J, IBRAHIM I M, MURUGAPPAN S. Dynamics of single and twin circular jets in cross flow[J]. Experiments in Fluids, 2011, 50(3): 653–663. doi: 10.1007/s00348-010-0965-2
    [9] HAVEN B A, KUROSAKA M. Kidney and anti-kidney vortices in crossflow jets[J]. Journal of Fluid Mechanics, 1997, 352: 27–64. doi: 10.1017/s0022112097007271
    [10] SALEWSKI M, STANKOVIC D, FUCHS L, et al. Coherent structures in circular and non-circular jets in crossflow[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-907
    [11] HARRIS E W. Structure, mixing, and dynamics of controlled single and coaxial jets in crossflow[D]. Los Angeles: University of California, 2020.
    [12] CAMBONIE T, GAUTIER N, AIDER J L. Experimental study of counter-rotating vortex pair trajectories induced by a round jet in cross-flow at low velocity ratios[J]. Experi-ments in Fluids, 2013, 54(3): 1475. doi: 10.1007/s00348-013-1475-9
    [13] KEFFER J F, BAINES W D. The round turbulent jet in a cross-wind[J]. Journal of Fluid Mechanics, 1963, 15(4): 481–496. doi: 10.1017/s0022112063000409
    [14] BROADWELL J E, BREIDENTHAL R E. Structure and mixing of a transverse jet in incompressible flow[J]. Journal of Fluid Mechanics, 1984, 148: 405–412. doi: 10.1017/s0022112084002408
    [15] HASSELBRINK E F, MUNGAL M G. Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets[J]. Journal of Fluid Mechanics, 2001, 443: 1–25. doi: 10.1017/S0022112001005146
    [16] SMITH S H, MUNGAL M G. Mixing, structure and scaling of the jet in crossflow[J]. Journal of Fluid Mechanics, 1998, 357: 83–122. doi: 10.1017/s0022112097007891
    [17] MARGASON R J. Fifty years of jet in cross flow research[C]//Proceedings of the AGARD Symposium on Computational and Experimental Assessment of Jets in Crossflow. 1993: 1–141.
    [18] KAMOTANI Y, GREBER I. Experiments on a turbulent jet in a cross flow[J]. AIAA Journal, 1972, 10(11): 1425–1429. doi: 10.2514/3.50386
    [19] KELSO R M, LIM T T, PERRY A E. An experimental study of round jets in cross-flow[J]. Journal of Fluid Mechanics, 1996, 306: 111–144. doi: 10.1017/s0022112096001255
    [20] LIM T T, NEW T H, LUO S C. On the development of large-scale structures of a jet normal to a cross flow[J]. Physics of Fluids, 2001, 13(3): 770–775. doi: 10.1063/1.1347960
    [21] HUANG R F, LAN J. Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet[J]. Physics of Fluids, 2005, 17(3): 034103. doi: 10.1063/1.1852575
    [22] GETSINGER D. Shear layer instabilities and mixing in variable density transverse jet flows[D]. Los Angeles: University of California, 2012.
    [23] 刘超群. Liutex–涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413–431, 478. doi: 10.7638/kqdlxxb-2020.0015

    LIU C Q. Liutex–third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413–431, 478. doi: 10.7638/kqdlxxb-2020.0015
    [24] LIU C Q, GAO Y S, DONG X R, et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. Journal of Hydrodynamics, 2019, 31(2): 205–223. doi: 10.1007/s42241-019-0022-4
    [25] WANG Y Q, GAO Y S, LIU C Q. Galilean invariance of Rortex[J]. Physics of Fluids, 2018, 30(11): 111701. doi: 10.1063/1.5058939
    [26] GEVORKYAN L. Structure and mixing characterization of variable density transverse jet flows[D]. Los Angeles: University of California, 2015.
    [27] YUAN L L, STREET R L, FERZIGER J H. Large-eddy simulations of a round jet in crossflow[J]. Journal of Fluid Mechanics, 1999, 379: 71–104. doi: 10.1017/s0022112098003346
    [28] ALTAHARWAH Y A, HUANG R F, HSU C M. Flow and mixing characteristics of a forward-inclined stack-issued jet in crossflow[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108549. doi: 10.1016/j.ijheatfluidflow.2020.108549
    [29] DAI C, JIA L, ZHANG J, et al. On the flow structure of an inclined jet in crossflow at low velocity ratios[J]. International Journal of Heat and Fluid Flow, 2016, 58: 11–18. doi: 10.1016/j.ijheatfluidflow.2015.12.001
    [30] ZHAO M J, LI Q L, YE T H. Investigation of an optimal pulsed jet mixing and combustion in supersonic crossflow[J]. Combustion and Flame, 2021, 227: 186–201. doi: 10.1016/j.combustflame.2021.01.005
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  210
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-29
  • 录用日期:  2021-11-09
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日