留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物多糖溶液喷射减阻实验研究

孟凡哲 秦丽萍 谢络 时朋飞 胡海豹

孟凡哲, 秦丽萍, 谢络, 等. 生物多糖溶液喷射减阻实验研究[J]. 实验流体力学, 2023, 37(2): 56-61 doi: 10.11729/syltlx20210089
引用本文: 孟凡哲, 秦丽萍, 谢络, 等. 生物多糖溶液喷射减阻实验研究[J]. 实验流体力学, 2023, 37(2): 56-61 doi: 10.11729/syltlx20210089
MENG F Z, QIN L P, XIE L, et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61 doi: 10.11729/syltlx20210089
Citation: MENG F Z, QIN L P, XIE L, et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61 doi: 10.11729/syltlx20210089

生物多糖溶液喷射减阻实验研究

doi: 10.11729/syltlx20210089
基金项目: 国家自然科学基金项目(52071272,12102358);基础前沿项目(JCKY2018*18);陕西省自然科学基础研究计划资助项目(2020JC-18);中央高校基本科研业务费专项资金(3102020HHZY030014,3102021HHZY030008);中国博士后科学基金资助项目(2021M692617);重庆市自然科学基金项目(cstc2021jcyj-msxmX0393)
详细信息
    作者简介:

    孟凡哲:(1998—),男,山东阳谷人,硕士研究生。研究方向:水下高聚物减阻技术。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学友谊校区航海学院(710072)。E-mail:fzhemeng@mail.nwpu.edu.cn

    通讯作者:

    E-mail:huhaibao@nwpu.edu.cn

  • 中图分类号: O357.5

Experimental study on drag reduction characteristics of biopolysaccharide solution

  • 摘要: 为获得生物多糖溶液的水下减阻性能,在重力式循环水槽实验系统中,测试了瓜尔胶、黄原胶、黄蓍胶及刺槐豆胶等4种生物多糖溶液的喷射减阻特性,给出了喷射溶液速率、主流雷诺数及喷射溶液质量分数对多糖溶液减阻的影响规律。研究结果表明:4种生物多糖溶液均具有显著的喷射减阻效果,其中刺槐豆胶溶液减阻率最高(14.3%);同一主流雷诺数下,随着喷射溶液速率的提高,各多糖溶液的减阻率显著提高,减阻率达到峰值后则呈现出不同的变化趋势;多糖溶液在主流雷诺数较小(<2.0×104)时减阻效果更优,提高主流雷诺数后,多糖溶液表现出差异化的减阻规律;喷射溶液质量分数过高会降低多糖溶液减阻效果,提高主流雷诺数会使多糖溶液减阻效果随质量分数的提高出现“峰值后移”现象。通过引入“喷射溶液相对质量分数”将喷射溶液速率、主流雷诺数及喷射溶液质量分数对减阻效果的影响相互耦合,随着相对质量分数的增大,4种多糖溶液的减阻率均表现出先升后降的变化规律。最后,基于相对质量分数初步阐明了多糖溶液的减阻规律。
  • 图  1  实验装置及喷射腔示意图

    Figure  1.  Schematic diagram of experimental apparatus and injection device

    图  2  喷射速率对多糖溶液减阻的影响

    Figure  2.  Effect of injection rate on drag reduction of polysaccharide solution

    图  3  主流雷诺数对多糖溶液减阻的影响

    Figure  3.  Effect of Re on drag reduction of polysaccharide solution

    图  4  多糖溶液质量分数对减阻的影响

    Figure  4.  Effect of mass fraction on drag reduction of polysaccharide solution

    图  5  多糖溶液减阻率随相对质量分数的变化

    Figure  5.  Variation of Rd of polysaccharide solution with ωr

  • [1] ALJALLIS E, SARSHAR M A, DATLA R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 025103. doi: 10.1063/1.4791602
    [2] LING H J, KATZ J, FU M, et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface[J]. Physical Review Fluids, 2017, 2(12): 124005. doi: 10.1103/physrevfluids.2.124005
    [3] CHOI W, BYEON H, PARK J Y, et al. Effects of pressure gradient on stability and drag reduction of superhydro-phobic surfaces[J]. Applied Physics Letters, 2019, 114(10): 101603. doi: 10.1063/1.5085081
    [4] PARK S R, WALLACE J M. Flow alteration and drag reduction by riblets in a turbulent boundary layer[J]. AIAA Journal, 1994, 32(1): 31–38. doi: 10.2514/3.11947
    [5] TANG Y P, CLARK D G. On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface[J]. Applied Scientific Research, 1993, 50(3-4): 215–232. doi: 10.1007/BF00850558
    [6] 冯家兴, 胡海豹, 卢丙举, 等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24–30. doi: 10.6052/0459-1879-19-279

    FENG J X, HU H B, LU B J, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24–30. doi: 10.6052/0459-1879-19-279
    [7] KWON B H, KIM H H, JEON H J, et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids, 2014, 55(4): 1–11. doi: 10.1007/s00348-014-1722-8
    [8] ELBING B R, WINKEL E S, LAY K A, et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction[J]. Journal of Fluid Mechanics, 2008, 612: 201–236. doi: 10.1017/s0022112008003029
    [9] 宋武超, 王聪, 魏英杰, 等. 水下航行体微气泡减阻特性试验研究[J]. 振动与冲击, 2019, 38(5): 203–208,228. doi: 10.13465/j.cnki.jvs.2019.05.029

    SONG W C, WANG C, WEI Y J, et al. Tests for microbubble drag reduction features of an underwater vehicle[J]. Journal of Vibration and Shock, 2019, 38(5): 203–208,228. doi: 10.13465/j.cnki.jvs.2019.05.029
    [10] TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers: The 1st International Congress on Rheology[C]//Proc of the 1st International Congress on Rheology. 1948.
    [11] BROSTOW W. Drag reduction and mechanical degradation in polymer solutions in flow[J]. Polymer, 1983, 24(5): 631–638. doi: 10.1016/0032-3861(83)90119-2
    [12] ELBING B R, PERLIN M, DOWLING D R, et al. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions[J]. Physics of Fluids, 2013, 25(8): 085103. doi: 10.1063/1.4817073
    [13] 任刘珍, 张庆辉, 陈少强, 等. 管道内均匀与非均匀PEO溶液湍流减阻特性研究[J]. 实验力学, 2019, 34(2): 217–223. doi: 10.750/1001-1888-17-188

    REN L Z, ZHANG Q H, CHEN S Q, et al. Study of the turbulent flow drag reduction characteristics of homoge-neous and inhomogeneous PEO solution in pipeline flow[J]. Journal of Experimental Mechanics, 2019, 34(2): 217–223. doi: 10.750/1001-1888-17-188
    [14] 王青会, 刘冬洁, 魏进家. 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究[J]. 西安交通大学学报, 2018, 52(1): 26–32. doi: 10.7652/xjtuxb201801005

    WANG Q H, LIU D J, WEI J J. Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 26–32. doi: 10.7652/xjtuxb201801005
    [15] MAHMOOD W K, KHADUM W A, EMAN E, et al. Biopolymer-surfactant complexes as flow enhancers: charac-terization and performance evaluation[J]. Applied Rheology, 2019, 29(1): 12–20. doi: 10.1515/arh-2019-0002
    [16] PANG M J, XIE C C, ZHANG Z, et al. Experimental studies on drag reduction by coupled addition of nonionic polymer poly(ethylene oxide) and cationic surfactant cetyl-trimethyl ammonium chloride[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(4): e2218. doi: 10.1002/apj.2218
    [17] WINKEL E S, OWEIS G F, VANAPALLI S A, et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions[J]. Journal of Fluid Mechanics, 2009, 621: 259–288. doi: 10.1017/s0022112008004874
    [18] MOTOZAWA M, KUROSAWA T, XU H N, et al. Experimental study on turbulent drag reduction and polymer mass fraction distribution with blowing polymer solution from the channel wall[C]//Proceedings of 2010 14th International Heat Transfer Conference. 2011: 797-805. doi: 10.1115/IHTC14-23199
    [19] SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104225. doi: 10.1016/j.jnnfm.2019.104225
    [20] ABDUL BARI H A, KAMARULIZAM S N, MAN R C. Investigating drag reduction characteristic using okra mucilage as new drag reduction agent[J]. Journal of Applied Sciences, 2011, 11(14): 2554–2561. doi: 10.3923/jas.2011.2554.2561
    [21] ABDUL BARI H A, LETCHMANAN K, YUNUS R M. Drag reduction characteristics using aloe vera natural mucilage: an experimental study[J]. Journal of Applied Sciences, 2011, 11(6): 1039–1043. doi: 10.3923/jas.2011.1039.1043
    [22] COELHO E C, BARBOSA K C O, SOARES E J, et al. Okra as a drag reducer for high Reynolds numbers water flows[J]. Rheologica Acta, 2016, 55(11-12): 983–991. doi: 10.1007/s00397-016-0974-z
    [23] SOARES E J, SIQUEIRA R N, LEAL L M, et al. The role played by the aging of aloe vera on its drag reduction properties in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 265: 1–10. doi: 10.1016/j.jnnfm.2018.12.010
    [24] RAJAPPAN A, MCKINLEY G H. Epidermal biopolysac-charides from plant seeds enable biodegradable turbulent drag reduction[J]. Scientific Reports, 2019, 9: 18263. doi: 10.1038/s41598-019-54521-3
    [25] KIM C A, LIM S T, CHOI H J, et al. Characterization of drag reducing guar gum in a rotating disk flow[J]. Journal of Applied Polymer Science, 2002, 83(13): 2938–2944. doi: 10.1002/app.10300
    [26] CAMPOLO M, SIMEONI M, LAPASIN R, et al. Turbulent drag reduction by biopolymers in large scale pipes[J]. Journal of Fluids Engineering, 2015, 137(4): 041102. doi: 10.1115/1.4028799
    [27] 禹燕飞, 李明义, 赵文斌, 等. 藻类多糖高聚物减阻特性的试验研究[C]//中国力学大会——2013论文摘要集. 2013: 259.
    [28] 李昌烽, 禹燕飞, 赵文斌, 等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报: 自然科学版, 2015, 36(1): 30–35. doi: 10.3969/j.issn.1671-7775.2015.01.006

    LI C F, YU Y F, ZHAO W B, et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University: Natural Science Edition, 2015, 36(1): 30–35. doi: 10.3969/j.issn.1671-7775.2015.01.006
    [29] 朱波, 赵文斌, 李明义, 等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学, 2018, 32(5): 61–66. doi: 10.11729/syltlx20180035

    ZHU B, ZHAO W B, LI M Y, et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61–66. doi: 10.11729/syltlx20180035
    [30] WU J, TULIN M P. Drag reduction by ejecting additive solutions into pure-water boundary layer[J]. Journal of Basic Engineering, 1972, 94(4): 749–754. doi: 10.1115/1.3425541
  • 加载中
图(5)
计量
  • 文章访问数:  2189
  • HTML全文浏览量:  217
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-09-01
  • 录用日期:  2021-09-19
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日