Study on interaction between wing tip vortex and flat tail tip vortex
-
摘要: 飞机尾涡的发展与同跑道降落后机的飞行安全及机场起降效率密切相关。尾涡的近场特性主要决定了着陆阶段飞机的尾涡强度。本文以A320飞机简化缩比模型为研究对象,在1 m × 1 m低速水洞中开展了尾涡近场形态的流动显示实验。研究结果表明:平尾涡围绕翼尖涡旋转,不同流向站位的旋转角速度存在差异。通过分析对比模拟结果发现:平尾涡绕翼尖涡的旋转角速度与实验结果基本吻合,说明不同雷诺数下涡对发展在相对位置旋转角速度特性方面具有一定的相似性。Abstract: The development of the wingtip vortex is an important factor for the flight safety and airport efficiency of the aircraft landing on the runway. The near-field characteristics of the wingtip vortex mainly determine the vorticity of the vortex in the landing phase. In this paper, a simplified model of A320 is used as the object to observe the near-field configuration of the wingtip vortex in a low-speed tunnel of 1 m × 1 m. It is found that the horizontal tail vortex rotates around the wingtip vortex, and the rotational angular velocity in different flow stations is different. By comparing the simulation results, it is found that the rotational angular velocity of the horizontal tail vortex around the wingtip vortex is basically consistent with the experimental results, indicating that the development of the wake vortex under different Reynolds numbers has certain similarity in the characteristics of the rotational angular velocity between two vortices.
-
Key words:
- wingtip vortex /
- rotation angle /
- water wind tunnel /
- numerical simulation
-
表 1 模型主要参数
Table 1. Parameters of the model
参数 数值 翼展b/m 0.5 展弦比 8 升力系数(α=6°) 0.85 实验来流速度u/(m·s−1) 0.5 雷诺数 3.63×104 表 2 3种网格的升阻力系数
Table 2. The lift and drag coefficient of three grids
8M 20M 32M CL 0.8798 0.8799 0.8801 CD 0.0534 0.0529 0.0531 ΔCL −0.03% −0.02% − ΔCD 0.56% −0.38% − -
[1] HALLOCK J N,HOLZÄPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences,2018,98:27-36. doi: 10.1016/j.paerosci.2018.03.003 [2] LIN M D,CUI G X,ZHANG Z S. Large eddy simulation of aircraft wake vortex with self-adaptive grid method[J]. Applied Mathematics and Mechanics,2016,37(10):1289-1304. doi: 10.1007/s10483-016-2132-9 [3] MISAKA T,HOLZÄPFEL F,GERZ T. Large-eddy simulation of aircraft wake evolution from roll-up until vortex decay[J]. AIAA Journal,2015,53(9):2646-2670. doi: 10.2514/1.j053671 [4] 林孟达,崔桂香,张兆顺,等. 飞机尾涡演变及快速预测的大涡模拟研究[J]. 力学学报,2017,49(6):1185-1200. doi: 10.6052/0459-1879-17-198LIN M D,CUI G X,ZHANG Z S,et al. Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):1185-1200. doi: 10.6052/0459-1879-17-198 [5] ZHOU J X,LI D,ZHANG Z Y,et al. Numerical simulation of energy distribution of turbulent vortices in atmosphere effects on aircraft wake vortices[J]. Journal of Physics: Conference Series,2021,1828(1):012167. doi: 10.1088/1742-6596/1828/1/012167 [6] 沈志远,胡莹莹. 考虑尾流影响的侧向双跑道机场的跑道容量研究[J]. 南京航空航天大学学报,2020,52(1):161-170. doi: 10.16356/j.1005-2615.2020.01.020SHEN Z Y,HU Y Y. Runway capacity of lateral double-runway airport considering wake effect[J]. Journal of Nanjing University of Aeronautics & Astronautics,2020,52(1):161-170. doi: 10.16356/j.1005-2615.2020.01.020 [7] SCHAUERHAMER D G,ROBINSON S K. Computational-fluid-dynamics best practices for aircraft wing-tip vortex roll-up[J]. Journal of Aircraft,2017,54(4):1552-1565. doi: 10.2514/1.C034187 [8] GERZ T,HOLZÄPFEL F,DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences,2002,38(3):181-208. doi: 10.1016/S0376-0421(02)00004-0 [9] HENNEMANN I,HOLZÄPFEL F. Large-eddy simulation of aircraft wake vortex deformation and topology[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2011,225(12):1336-1350. doi: 10.1177/0954410011402257 [10] BREITSAMTER C. Wake vortex characteristics of transport aircraft[J]. Progress in Aerospace Sciences,2011,47(2):89-134. doi: 10.1016/j.paerosci.2010.09.002 [11] 鲍锋,刘锦生,朱睿,等. 飞机尾涡系Rayleigh-Ludwieg不稳定性实验研究[J]. 航空学报,2015,36(7):2166-2176. doi: 10.7527/S1000-6893.2015.0091BAO F,LIU J S,ZHU R,et al. Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex[J]. Acta Aeronautica et Astronautica Sinica,2015,36(7):2166-2176. doi: 10.7527/S1000-6893.2015.0091 [12] 朱睿,陈子煜,李尚,等. 襟翼翼尖涡控制飞机尾流机制实验研究[J]. 推进技术,2019,40(4):768-779. doi: 10.13675/j.cnki.tjjs.180054ZHU R,CHEN Z Y,LI S,et al. Experimental research on aircraft wake flow control by flap wingtip vortex[J]. Journal of Propulsion Technology,2019,40(4):768-779. doi: 10.13675/j.cnki.tjjs.180054 [13] 薛栋,潘翀,袁先士,等. 低雷诺数下翼尖涡统计特性实验研究[J]. 实验流体力学,2019,33(5):36-41. doi: 10.11729/syltlx20180129XUE D,PAN C,YUAN X S,et al. Experimental investigation on the characteristics of wingtip vortex at low Reynolds number[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):36-41. doi: 10.11729/syltlx20180129 [14] 章旷,代钦. 地面效应作用下翼尖涡特性的PIV实验研究[J]. 空气动力学学报,2015,33(3):367-374,405. doi: 10.7638/kqdlxxb-2013.0049ZHANG K,DAI C. Experimental study on the tip vortices of a wing close to a flat and a wavy surface using PIV[J]. Acta Aerodynamica Sinica,2015,33(3):367-374,405. doi: 10.7638/kqdlxxb-2013.0049 [15] FABRE D,JACQUIN L,LOOF A. Optimal perturbations in a four-vortex aircraft wake in counter-rotating configura-tion[J]. Journal of Fluid Mechanics,2002,451:319-328. doi: 10.1017/s0022112001006954 -