Calibration results and analysis of thin-film gauges calibrated with the transfer method
-
摘要: 针对常用于薄膜热电阻热流传感器(简称薄膜热流计)的两步法标定步骤多、误差源多等问题,在解决吸收薄膜必要性、标定时间和标定热流范围的基础上实现了薄膜热流计的对比标定。在对比标定薄膜热流计时,基体材料的热物性参数乘积以及热电阻的电阻–温度系数被处理成简单的传感器灵敏度系数,使得标定实验只是重复简单的步骤,有效减少了误差源;针对通过对比标定获得的多支薄膜热流计灵敏度系数差异大的问题,在分析其测温原理的基础上通过去除热电阻的电阻-温度系数,得到同一批次生产的多支薄膜热流计较为一致的修正灵敏度系数。薄膜热流计对比标定结果的扩展不确定度不超过6.5%,明显优于二步法标定结果的扩展不确定度约10.7%,提升了薄膜热流计测热结果的可信度。Abstract: Considering the fact that there are more error sources in the measured heat flux with thin-film gauges when the two-stage approach is applied to determine the thermal product and resistance-temperature factor, the transfer method is applied to directly calibrate thin-film gauges, in which the thermal product and resistance-temperature factor are treated as the sensitivity coefficients. To get the consistent calibration results of different thin-film gauges fabricated in a batch, the sensitivity coefficients are divided by the resistance-temperature factors of the thin-film gauges, and then the correction sensitivity coefficients are consistent. With the transfer calibration technique, the calibration results of thin-film gauges show a good linearity with a relative expanded uncertainty below 6.5%, which is lower than that reported in other researches, in which the two-stage approach is used to calibrate thin-film gauges.
-
Key words:
- thin-film resistance /
- heat flux /
- calibration /
- sensitivity /
- uncertainty analysis
-
表 1 其他7支薄膜热流计的标定结果
Table 1. The calibration results of other 7 thin-film gauges
编号 Sensitivity
/(Ω·s–0.5·kW–1.m2)Maximum
non-linearity /%Resistance-temperature
factor /(Ω·℃-1)Correction sensitivity
/(℃·s–0.5·W–1.m2)1 0.03451 0.414 0.1207 0.2859 2 0.02183 0.295 0.0787 0.2773 3 0.02133 0.069 0.0767 0.2782 4 0.02352 0.172 0.0824 0.2856 5 0.03519 0.373 0.1224 0.2874 6 0.02817 0.525 0.0982 0.2868 7 0.02627 0.246 0.0921 0.2852 表 2 薄膜热流计对比标定结果的不确定度估计
Table 2. Estimation of uncertainties for the calibration results of a thin-film gauge
Uncertainty source Type Uncertainty (%) Ⅰ Transfer standard ECR B 0.6 Ⅱ Gardon gauge A 0.606① Ⅲ Non-uniformity and time stability of the laser beam A 2.8② Ⅳ Position alignment B 0.1 Ⅴ Data acquisition unit B 0.5 Ⅵ High-temperature paint B 1.0 Ⅶ Current source B 0.5 Ⅷ Non-linearity A 0.536③ Relative expanded uncertainty(κ=2④) The thin-film gauge 6.44 Relative expanded uncertainty(κ=2④) [13-14] 10.72 注: ①定期利用ECR对水冷Gardon计进行校准,保证了水冷Gardon计可溯源至工业级最高的功率计标准,通过校准数据的线性拟合得到源于水冷 Gardon计自身的不确定度0.606%。
②由于不同的感应面尺寸和传感器在标定系统中移动时的定位精度等问题,标定光斑的均匀性直接影响标定结果的准确性,因此利用面阵CCD相机 对标定光斑进行拍照,进而分析得到标定光斑功率分布均匀性和时间稳定性的不确定度为2.8%。
③来自于图4。
④κ=2表示不确定度因素符合正态分布,置信概率为95%。 -
[1] 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.Liu C P. Heat flux measurement in aerothermodynamic test[M]. Beijing: National Defense Industry Press, 2013 [2] 金新航,马炳和,邱涛,等. 超燃冲压发动机温度及热流测量技术研究进展[J]. 实验流体力学,2018,32(2):74-81. doi: 10.11729/syltlx20170013JIN X H,MA B H,QIU T,et al. Temperature and heat flux measurement technologies in scramjet[J]. Journal of Ex-periments in Fluid Mechanics,2018,32(2):74-81. doi: 10.11729/syltlx20170013 [3] 李强,刘济春,孔荣宗. 耐冲刷薄膜铂电阻热流传感器研制[J]. 电子测量与仪器学报,2017,31(4):623-629.LI Q,LIU J C,KONG R Z. Development of anti-erosion platinum thin film resistance thermal sensor[J]. Journal of Electronic Measurement and In-strumentation,2017,31(4):623-629. [4] LU F K,KINNEAR K M. Characterization of thin-film heat-flux gauges[J]. Journal of Thermophysics and Heat Transfer,1999,13(4):548-549. doi: 10.2514/2.6477 [5] LI J P,CHEN H,ZHANG S Z,et al. On the response of coaxial surface thermocouples for transient aerodynamic heating measurements[J]. Ex-perimental Thermal and Fluid Science,2017,86:141-148. doi: 10.1016/j.expthermflusci.2017.04.011 [6] MANJHI S K,KUMAR R. Performance assessment of K-type, E-type and J-type coaxial thermocouples on the solar light beam for short duration transient measurements[J]. Measurement,2019,146:343-355. doi: 10.1016/j.measurement.2019.06.035 [7] 王宏宇,王辉,石义雷,等. 一种高超声速稀薄流激波干扰气动热测量技术[J]. 宇航学报,2020,41(12):1525-1532.WANG H Y,WANG H,SHI Y L,et al. An aerothermo-dynamics measuring technique for shock interactions in hypersonic low-density flow[J]. Journal of Astronautics,2020,41(12):1525-1532. [8] 杨凯,朱涛,王雄,等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学,2020,34(6):86-91. doi: 10.11729/syltlx20190148YANG K,ZHU T,WANG X,et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics,2020,34(6):86-91. doi: 10.11729/syltlx20190148 [9] 李强,万兵兵,杨凯,等. 高超声速尖锥边界层压力脉动和热流脉动特性试验研究[J]. 航空学报,2021,42(8):12956. doi: 10.7527/S1000-6893.2020.24956LI Q,Wan B B,YANG K,et al. Experimental research on the characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica,2021,42(8):12956. doi: 10.7527/S1000-6893.2020.24956 [10] COOK W J,FELDERMAN E J. Reduction of data from thin-film heat-transfer gages - A concise numerical technique[J]. AIAA Journal,1966,4(3):561-562. doi: 10.2514/3.3486 [11] ASTM standard. Standard test method for measuring extreme heat-transfer rates from high-energy environments using a transient null-point calo-rimeter, ASTM E598-96[S]. Pennsylvania : ASTM International, 1996. doi: 10.1520/E0598-96 [12] 林键,陈星,王丹,等. 柔性铂电阻传感器在舵缝热环境试验中的应用[J]. 气动研究与实验,2021,33(02):91-97. doi: 10.12050/are20210209LIN J,CHEN X,WANG D,et al. Application of flexible platinum sensor in aerothermal environment test of rudder gap[J]. Aerodynamic Research & Experiment,2021,33(02):91-97. doi: 10.12050/are20210209 [13] 张宏安,黄见洪,秦峰,等. 基于脉冲加热法的薄膜热流传感器热物性参数测量技术研究[J]. 实验流体力学,2018,32(6):74-78,93. doi: 10.11729/syltlx20170120ZHANG H A,HUANG J H,QIN F,et al. Thermal property measuring tech-niques of thin-film heat flux sensors based on pulse-heating method[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):74-78,93. doi: 10.11729/syltlx20170120 [14] THORPE S J,YOSHINO S,AINSWORTH R W,et al. Improved fast-response heat transfer instrumentation for short-duration wind tun-nels[J]. Measurement Science and Technology,2004,15(9):1897-1909. doi: 10.1088/0957-0233/15/9/030 [15] WALKER D G,SCOTT E P. Evaluation of estimation methods for high unsteady heat fluxes from surface measure-ments[J]. Journal of Ther-mophysics and Heat Transfer,1998,12(4):543-551. doi: 10.2514/2.6374 [16] SHI Y A,ZENG L,QIAN W Q,et al. A data processing method in the experiment of heat flux testing using inverse methods[J]. Aerospace Science and Technology,2013,29(1):74-80. doi: 10.1016/j.ast.2013.01.009 [17] 曾磊,石友安,孔荣宗,等. 薄膜电阻温度计原理性误差分析及数据处理方法研究[J]. 实验流体力学,2011,25(1):79-83. doi: 10.3969/j.issn.1672-9897.2011.01.016ZENG L,SHI Y A,KONG R Z,et al. Study on principle error analysis and data processing method of thin film resistance thermometer[J]. Journal of Experiments in Fluid Mechanics,2011,25(1):79-83. doi: 10.3969/j.issn.1672-9897.2011.01.016 [18] MURTHY A V,TSAI B K,GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology,1997,102(4):479-488. doi: 10.6028/jres.102.032 [19] MURTHY A V,TSAI B K,SAUNDERS R D. Transfer calibration vali-dation tests on a heat flux sensor in the 51 mm high-temperature blackbody[J]. Journal of Research of the National Institute of Standards and Technology,2001,106(5):823-831. doi: 10.6028/jres.106.039 [20] 罗跃,杨凯,黄伟,等. 用于高温高压剪切流场的Gardon计研制[J]. 科学技术与工程,2017,17(29):139-144. doi: 10.3969/j.issn.1671-1815.2017.29.020LUO Y,YANG K,HUANG W,et al. Design and fabrication of gardon fage used in shear flow filed of high tempera-ture/pressure[J]. Science Technology and Engineering,2017,17(29):139-144. doi: 10.3969/j.issn.1671-1815.2017.29.020 [21] 朱新新,王辉,杨凯,等. 塞块量热计的热流计算与修正方法研究[J]. 实验流体力学,2020,34(5):97-102,108. doi: 10.11729/syltlx20190134ZHU X X,WANG H,YANG K,et al. Research on heat flux calculation and correction methods of the slug calori-meter[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):97-102,108. doi: 10.11729/syltlx20190134 [22] 杨凯,杨庆涛,朱新新,等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术,2018,38(3):67-72.YANG K,YANG Q T,ZHU X X,et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement,2018,38(3):67-72. [23] YANG K,YANG Q T,ZHU X X,et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measure-ment,2020,150:107039. doi: 10.1016/j.measurement.2019.107039 [24] YANG K. Comment on “Highly sensitive heat flux sensor based on the transverse thermoelectric effect of YBa2-Cu3O7-δ thin film”[J]. Applied Physics Letters,2021,119(6):066101. doi: 10.1063/5.0046273 [25] SONG X Y, HUAN K W, DONG W, et al. Research on infrared radiation characteristics of Pyromark1200 high-temperature coating[C]//Proc of the SPIE Proceedings, International Symposium on Optoelectronic Technology and Application 2014. 2014. doi: 10.1117/12.2072577 [26] SCHULTZ D L,JONES T V. Heat-transfer measurements in short-duration hypersonic facilities[J]. AGARDograph,1973(165):1-157. [27] 苑朝凯, 谷笳华. 高精度铂薄膜电阻传感器标定系统[C]//高温气体动力学研究进展论文集. 2011. -