Research on the dynamic derivatives test technology of 4.5 m × 3.5 m low speed wind tunnel
-
摘要: 动导数是飞行器操稳特性分析、控制律设计过程中的关键参数。为满足大型飞行器研制对高精度动导数数据的获取需求,中国航空工业空气动力研究院基于4.5 m × 3.5 m低速风洞开发了具备5种振荡试验能力的低速动导数试验系统。该试验系统利用伺服液压摆动马达和伺服液压缸作为运动的驱动元件,经过伺服阀的控制直接产生任意波形的强迫运动,具有运动传递间隙小、运动控制精度高、系统自动化程度高等特点。可实现2.5 m量级模型的动导数试验,风速范围30~60 m/s,迎角范围−36°~36°,侧滑角范围−40°~40°。利用动态标模及某翼身融合布局模型进行了动导数验证试验,结果表明该系统获得的动导数数据规律合理,数据精度在3%以内,可为大型飞行器研制提供高质量的动导数试验数据。Abstract: The dynamic derivatives are the a necessary parameters in the process of analyzing the stability of the aircraft and designing the control law, in order to meet the demand for obtaining high-precision dynamic derivatives data for large-scale aircraft. Aerodynamics Research Institute of Aviation Industry Corporation of China (AVIC) developed a dynamic derivatives test system with five kinds of oscillations in the 4.5 m × 3.5 m low-speed wind tunnel. The test system uses servo hydraulic swing motor and servo hydraulic cylinder as the driving components of the motion, and directly generates arbitrary waveform motion with the control of the servo valve. The driving mode of the system has the characteristics of small movement transmission gap, high movement control precision, and high automation. The scale of the test model is up to 2.5 m, with the wind speed v =30~60 m/s, the angle of attack α= −36°~36°, and the sideslip angle β= −40°~40°. The verification tests of the dynamic standard model and a wing-body model were carried out, and the test results show that the dynamic derivatives data obtained by the test system is reasonable, the accuracy of the repeatability test data is within 3%, and the test system can provide high-quality dynamic derivatives data for large-scale aircraft.
-
表 1 角振荡动导数试验装置模态分析结果
Table 1. Modal analysis results of angular oscillation test device
模态阶数 频率/Hz 1 16.06 2 19.35 3 34.29 4 37.62 5 46.83 6 48.91 表 2 平移振荡试验装置模态分析结果
Table 2. Modal analysis results of translational oscillation test device
模态阶数 频率/Hz 1 23.16 2 32.82 3 35.36 4 98.11 5 99.55 6 117.61 表 3 角振荡运动曲线与给定标准信号的差异
Table 3. Differences between angular oscillation motion curve and given standard signal
振幅/(°) 频率/Hz 幅值差/(°) 相位差/(°) 3 0.5 0.015 0.13 3 1.0 0.020 0.16 3 1.5 0.025 0.16 3 2.0 0.032 0.07 3 2.5 0.040 0.05 表 4 平移振荡运动曲线与给定标准信号的差异
Table 4. Differences between translational oscillation motion curve and given standard signal
振幅/m 频率/Hz 幅值差/m 相位差/(°) 0.12 0.5 0.0014 1.48 0.12 1.0 0.0021 1.1 0.12 1.5 0.0028 0.70 0.12 2.0 0.0031 0.3 0.12 2.5 0.0032 0.04 表 5 翼身融合布局飞机动导数试验模型参数
Table 5. Dynamic derivative test model parameters of wing-body
参数 值 模型比例 1∶15 参考面积S/m2 1.072 平均气动弦长cA/m 0.691 展长b/m 2.4 表 6 动导数重复性精度
Table 6. Dynamic derivatives repeatability accuracy
α/(°) $ ({C}_{mq} + {C}_{m\dot{\alpha }}) $/% $ ({C}_{lp} + {C}_{l\dot{\beta }}\mathrm{sin}\alpha ) $/% $ ({C}_{nr}-{C}_{n\dot{\beta }}\mathrm{cos}\alpha ) $/% 0 1.0 0.2 0.4 8 0.4 0.4 0.3 16 0.4 1.0 1.0 20 1.7 0.3 2.0 24 2.9 0.1 2.8 -
[1] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 208-218. [2] HANFF E S. Direct forced-oscillation techniques for the determination of stability derivatives in wind tunnel[R]. AGARD LS-114, 1981. [3] BEYERS M E. A new concept for aircraft dynamic stability testing[J]. Journal of Aircraft,1983,20(1):5-14. doi: 10.2514/3.44822 [4] 和争春,汪清,蔡金狮. 自由振荡风洞实验获取的随振幅变化的动导数的应用问题研究[J]. 空气动力学学报,2002,20(4):403-410. doi: 10.3969/j.issn.0258-1825.2002.04.005HE Z C,WANG Q,CAI J S. Research on the flight-dynamic application problem of the dynamic stability derivative obtained from wind-tunnel free-oscillation experiment[J]. Acta Aerodynamica Sinica,2002,20(4):403-410. doi: 10.3969/j.issn.0258-1825.2002.04.005 [5] 孙海生. 96型低速大攻角动导数试验系统[J]. 流体力学实验与测量,1999,13(1):31-37. doi: 10.3969/j.issn.1672-9897.1999.01.005SUN H S. The development of 96-test system for measuring dynamic derivatives at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics,1999,13(1):31-37. doi: 10.3969/j.issn.1672-9897.1999.01.005 [6] 赵忠良,任斌,黄叙辉,等. 跨超、高超声速风洞模型动导数试验技术研究[J]. 航空学报,2000,21(1):52-55. doi: 10.3321/j.issn:1000-6893.2000.01.011ZHAO Z L,REN B,HUANG X H,et al. Investigation on model dynamic stability derivatives test techniques in trans-, supers-, hypersonic wind tunnels[J]. Acta Aeronautica et Astronautica Sinica,2000,21(1):52-55. doi: 10.3321/j.issn:1000-6893.2000.01.011 [7] 卜忱,杜希奇,王学俭. 飞行器纵向阻尼动导数直接测量实验研究[J]. 实验流体力学,2005,19(1):31-34. doi: 10.3969/j.issn.1672-9897.2005.01.006BU C,DU X Q,WANG X J. Investigation of longitudinal damping derivative of aircraft by direct measurement tests[J]. Journal of Experiments in Fluid Mechanics,2005,19(1):31-34. doi: 10.3969/j.issn.1672-9897.2005.01.006 [8] MIALON B, KHRABROV A, DA RONCH A, et al. Benchmarking the prediction of dynamic derivatives: wind tunnel tests, validation, acceleration methods[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference. 2010: 8244. doi: 10.2514/6.2010-8244 [9] 梁勇. Φ3.2米低速风洞单自由度动导数试验技术研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.LIANG Y. Research on the test technology of dynamic derivatives of Φ3.2 m low speed wind tunnel[D]. Mianyang: China Aerodynamics Research and Development Center, 2010. [10] 黄达,郑遂,文立红,等. 大振幅实验对常规动导数实验包容性研究[J]. 空气动力学学报,2008,26(1):111-114. doi: 10.3969/j.issn.0258-1825.2008.01.021HUANG D,ZHENG S,WEN L H,et al. Investigation on contain of the large amplitude test to the general dynamic derivative test[J]. Acta Aerodynamica Sinica,2008,26(1):111-114. doi: 10.3969/j.issn.0258-1825.2008.01.021 [11] 郑亚青,林麒,刘雄伟,等. 用于低速风洞飞行器气动导数试验的绳牵引并联支撑系统[J]. 航空学报,2009,30(8):1549-1554. doi: 10.3321/j.issn:1000-6893.2009.08.029ZHENG Y Q,LIN Q,LIU X W,et al. On wire-driven parallel suspension systems for static and dynamic derivatives of aircraft in low-speed wind tunnels[J]. Acta Aeronautica et Astronautica Sinica,2009,30(8):1549-1554. doi: 10.3321/j.issn:1000-6893.2009.08.029 [12] 谢志江,孙小勇,孙海生,等. 低速风洞动态试验的高速并联机构设计及动力学分析[J]. 航空学报,2013,34(3):487-494. doi: 10.7527/S1000-6893.2013.0084XIE Z J,SUN X Y,SUN H S,et al. Mechanism design and dynamics analysis of high speed parallel robot for dynamic test in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2013,34(3):487-494. doi: 10.7527/S1000-6893.2013.0084 [13] 刘志涛,孙海生. 一种提高风洞动态试验数据质量的模型姿态控制和测量技术[J]. 航空学报,2016,37(8):2426-2435.LIU Z T,SUN H S. A model attitude control and measurement technique for improving quality of wind tunnel dynamic test data[J]. Acta Aeronautica et Astronautica Sinica,2016,37(8):2426-2435. [14] GRAFTON S B, ANGLIN E L. Dynamic stability derivatives at angles of attack from −5°to 90°for a variable-sweep fighter configuration[R]. NASA-TN-D-6909, 1972. [15] OWENS B, BRANDON J, CROOM M, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC[C]//Proc of the 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2006: 3146. doi: 10.2514/6.2006-3146 [16] HÜBNER A R. Experimental and numerical investigations of unsteady aerodynamic derivatives for transport aircraft configurations[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 1076. [17] 马超,司江涛,党亚斌. 一种常规布局民用飞机的动稳定性导数研究[J]. 飞行力学,2013,31(1):75-79. doi: 10.13645/j.cnki.f.d.2013.01.018MA C,SI J T,DANG Y B. Dynamic derivatives investigation of a conventional configuration civil transport aircraft[J]. Flight Dynamics,2013,31(1):75-79. doi: 10.13645/j.cnki.f.d.2013.01.018 [18] 刘春明,赵志军,卜忱,等. 低速风洞双自由度大幅振荡试验技术[J]. 航空学报,2016,37(8):2417-2425. doi: 10.7527/S1000-6893.2016.0154LIU C M,ZHAO Z J,BU C,et al. Double degree-of-freedom large amplitude oscillation test technology in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2016,37(8):2417-2425. doi: 10.7527/S1000-6893.2016.0154 [19] 王建锋,卜忱,谭浩. 基于液压驱动的动态试验控制系统设计[J]. 航空学报,2017,38(S1):721521. doi: 10.7527/S1000-6893.2017.721521WANG J F,BU C,TAN H. Control system design of dynamic test based on hydraulic drive[J]. Acta Aeronautica et Astronautica Sinica,2017,38(S1):721521. doi: 10.7527/S1000-6893.2017.721521 -