留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PIV技术的高速空腔流动演化特性研究

吴继飞 周方奇 徐来武 杨可 梁锦敏

吴继飞, 周方奇, 徐来武, 等. 基于PIV技术的高速空腔流动演化特性研究[J]. 实验流体力学, 2023, 37(6): 34-41 doi: 10.11729/syltlx20210144
引用本文: 吴继飞, 周方奇, 徐来武, 等. 基于PIV技术的高速空腔流动演化特性研究[J]. 实验流体力学, 2023, 37(6): 34-41 doi: 10.11729/syltlx20210144
WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41 doi: 10.11729/syltlx20210144
Citation: WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41 doi: 10.11729/syltlx20210144

基于PIV技术的高速空腔流动演化特性研究

doi: 10.11729/syltlx20210144
详细信息
    作者简介:

    吴继飞:(1980—),男,安徽亳州人,博士,副研究员。研究方向:试验空气动力学。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:kkwjf@126.com

    通讯作者:

    E-mail:fqzhou20@126.com

  • 中图分类号: V211.7

Evolution of high-speed cavity flow based on PIV technology

  • 摘要: 空腔结构在高速来流条件下会产生复杂流动和高强度噪声,严重影响飞行器的气动特性和结构安全。采用粒子图像测速(Particle Image Velocimetry,PIV)技术和动态压力测量相结合的方法,对长深比为3~10的空腔在来流马赫数0.4~0.8状态下的流动噪声特性开展试验研究,着重分析了空腔长深比和来流马赫数对腔内流场结构的影响,揭示了空腔噪声强度与腔内流动的关联性。结果表明:随着长深比增大,腔内剪切层厚度迅速增长并向腔内扩张,与空腔的撞击位置由后壁下移至底面,腔内流体由开式流动向闭式流动转变;来流马赫数的增大会抑制剪切层向腔内发展,诱导主回流旋涡后移,使得流体趋于开式流动;腔内后壁总声压级的幅值与流体撞击后壁时的流向速度正相关。
  • 图  1  试验模型安装示意图

    Figure  1.  Schematic diagram of test model

    图  2  PIV测量装置示意图

    Figure  2.  Schematic diagram of PIV measuring device

    图  3  空腔中轴面结构示意图

    Figure  3.  Schematic diagram of the axial structure of the cavity

    图  4  Ma = 0.4时腔内流场结构

    Figure  4.  Flow structure in cavity at Ma = 0.4

    图  5  Ma = 0.4时腔内x/L = 0.60处无量纲流向速度分布

    Figure  5.  Dimensionless flow velocity distribution at x/L = 0.60 in the cavity when Ma = 0.4

    图  6  L/D = 6条件下不同Ma时腔内流场结构

    Figure  6.  Flow structure in cavity with L/D = 6 at different Ma

    图  7  Ma = 0.4时后壁上缘总声压级和流向速度

    Figure  7.  lOASPL and u at the upper edge of the rear wall when Ma = 0.4

    图  8  Ma = 0.4时后壁上缘声压频谱

    Figure  8.  GSPFS at the upper edge of the rear wall under the condition of Ma = 0.4

    图  9  L/D = 6条件下不同Ma时后缘总声压级和流向速度

    Figure  9.  lOASPL and u at the upper edge of the rear wall at different Ma under the condition in cavity of L/D = 6

    图  10  L/D = 6条件下不同Ma时后壁上缘声压频谱

    Figure  10.  GSPFS at the upper edge of the rear wall at different Ma under the condition in cavity of L/D = 6

    表  1  Rossiter公式估算值与试验值比较

    Table  1.   Camparision between estimated results of Rossiter formula and measurements

    试验条件峰值模态St1St2St3
    L/D = 3,Ma = 0.4Rossiter0.3850.8511.316
    本文试验0.883
    L/D = 6,Ma = 0.6Rossiter0.2660.6941.223
    本文试验0.7281.204
    L/D = 6,Ma = 0.8Rossiter0.2470.6461.045
    本文试验0.2760.6611.081
    下载: 导出CSV
  • [1] STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
    [2] PLENTOVIC E B, STALLINGS R L, TRACY M B. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-3358, 1993.
    [3] ROSSITER J E. Wind tunnel experimental on the flow over rectangular cavities at subsonic and transonic speeds[R]. ARC/R&M-3438, 1964.
    [4] ZHANG J, MORISHITA E, OKUNUKI T, et al. Experi-mental and computational investigation of supersonic cavity flows[C]//Proc of the 10th AIAA/NAL-NASDA-ISAS Inter-national Space Planes and Hypersonic Systems and Techno-logies Conference. 2001. doi: 10.2514/6.2001-1755
    [5] LOUIS G K, RODNEY L C. Mach 0.6 to 3.0 flows over rectangular cavities[R]. AFWAL-TR-82-3112, 1983.
    [6] 吴继飞, 罗新福, 范召林. 亚、跨、超声速下空腔流场特性实验研究[J]. 实验流体力学, 2008, 22(1): 71–75. doi: 10.3969/j.issn.1672-9897.2008.01.015

    WU J F, LUO X F, FAN Z L. Experimental investigation of cavity flow characteristics at subsonic, transonic and super-sonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 71–75. doi: 10.3969/j.issn.1672-9897.2008.01.015
    [7] ÜNALMIS Ö H, CLEMENS N T, DOLLING D S. Planar laser imaging of a supersonic side-facing cavity[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-297
    [8] HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities – physical mechanisms and suppression concepts[R]. AFFDL TR-74-133, 1975.
    [9] 杨党国, 祝静, 李建强, 等. 跨超声速开式空腔流激振荡模态预估分析[J]. 空气动力学学报, 2014, 32(3): 369–375. doi: 10.7638/kqdlxxb-2012.0126

    YANG D G, ZHU J, LI J Q, et al. Prediction and analysis of flow oscillation modes inside open cavities at transonic or supersonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(3): 369–375. doi: 10.7638/kqdlxxb-2012.0126
    [10] CLARK R L. Weapons Bay Turbulence Reduction Techni-ques[R]. AFFDL TM-75-147-FXM, 1975. doi: 10.21236/ada334771
    [11] LONG D A. An examination of pressure fluctuations in open cavities at transonic speeds[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3100
    [12] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2015, 57(1): 1–12. doi: 10.1007/s00348-015-2088-2
    [13] LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018, 56(7): 2669–2686. doi: 10.2514/1.J056689
    [14] 陶洋, 吴继飞, 徐来武, 等. 基于前缘边界层扰动的空腔压力脉动抑制研究[J]. 实验流体力学, 2016, 30(3): 66–70. doi: 10.11729/syltlx20150103

    TAO Y, WU J F, XU L W, et al. Control of cavity flow pressure oscillation through leading edge boundary layer perturbation[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 66–70. doi: 10.11729/syltlx20150103
    [15] 周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 121812.

    ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121812.
    [16] CHAUDHARI K, RAMAN G. Control of flow over a rectangular cavity using a rod in cross flow: further evaluation of key mechanisms[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-37
    [17] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1–22. doi: 10.1007/s00348-014-1810-9
    [18] 吴继飞, 徐来武, 范召林, 等. 开式空腔气动声学特性及其流动控制方法[J]. 航空学报, 2015, 36(7): 2155–2165.

    WU J F, XU L W, FAN Z L, et al. Aeroacoustic characteristics and flow control method of open cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2155–2165.
    [19] STANEK M, RAMAN G, ROSS J, et al. High frequency acoustic suppression - the role of mass flow & the notion of superposition[C]//Proc of the 8th AIAA/CEAS Aeroacous-tics Conference & Exhibit. 2002. doi: 10.2514/6.2002-2404
    [20] 杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(6): 1007–1014.

    YANG D G, WU J F, LUO X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astro-nautica Sinica, 2011, 32(6): 1007–1014.
    [21] CHAN S, ZHANG X, GABRIEL S. The attenuation of cavity tones using plasma actuators[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-2802
    [22] BLAIR A, STALLINGS R. Cavity door effects on aero-dynamic loadings of compressed-carriage store configurations separating from cavities at supersonic speeds[C]//Proc of the 26th Aerospace Sciences Meeting. 1988. doi: 10.2514/6.1988-333
    [23] SAHOO D, ANNASWAMY A, ALVI F. Microjets-based active control of store trajectory in a supersonic cavity using a low-order model[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-3097
    [24] 吴继飞, 罗新福, 范召林. 内埋式弹舱流场特性及武器分离特性改进措施[J]. 航空学报, 2009, 30(10): 1840–1845. doi: 10.3321/j.issn:1000-6893.2009.10.008

    WU J F, LUO X F, FAN Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1840–1845. doi: 10.3321/j.issn:1000-6893.2009.10.008
    [25] 吴继飞, 罗新福, 徐来武, 等. 内埋武器分离特性及其改进方法研究[J]. 空气动力学学报, 2014, 32(6): 814–819. doi: 10.7638/kqdlxxb-2012.0178

    WU J F, LUO X F, XU L W, et al. Investigation on internal weapon separation characteristics and flow control methods[J]. Acta Aerodynamica Sinica, 2014, 32(6): 814–819. doi: 10.7638/kqdlxxb-2012.0178
    [26] 吴继飞, 徐来武, 范召林, 等. 内埋弹舱舱门气动特性研究[J]. 空气动力学学报, 2012, 30(6): 744–748.

    WU J F, XU L W, FAN Z L, et al. Investigation on aerodynamic characteristics of internal bay's door[J]. Acta Aerodynamica Sinica, 2012, 30(6): 744–748.
    [27] 吴继飞, 徐来武, 郭洪涛, 等. 内埋武器舱舱门开闭动态模拟试验技术研究[J]. 实验流体力学, 2015, 29(4): 88–94. doi: 10.11729/syltlx20140131

    WU J F, XU L W, GUO H T, et al. Investigation on dynamic simulation technology of internal weapons bay's doors opening and closing[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 88–94. doi: 10.11729/syltlx20140131
    [28] HAMMAD K J. Coherent structures in turbulent boundary layer flows over a shallow cavity[C]//Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition. 2018. doi: 10.1115/IMECE2017-70142
    [29] RITCHIE S, LAWSON N, KNOWLES K. Application of particle image velocimetry to transonic cavity flows[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-1060
    [30] BERESH S J, WAGNER J L, PRUETT B O M, et al. Supersonic flow over a finite-width rectangular cavity[J]. AIAA Journal, 2015, 53(2): 296–310. doi: 10.2514/1.J053097
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  115
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-11-28
  • 录用日期:  2021-12-15
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日