留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学发光火焰三维重建研究综述

冯晓鸥 金熠 翟超

冯晓鸥, 金熠, 翟超. 化学发光火焰三维重建研究综述[J]. 实验流体力学, 2023, 37(2): 1-15 doi: 10.11729/syltlx20210148
引用本文: 冯晓鸥, 金熠, 翟超. 化学发光火焰三维重建研究综述[J]. 实验流体力学, 2023, 37(2): 1-15 doi: 10.11729/syltlx20210148
FENG X O, JIN Y, ZHAI C. Summary of research on flame 3D reconstruction based on computed tomography of chemiluminescence technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 1-15 doi: 10.11729/syltlx20210148
Citation: FENG X O, JIN Y, ZHAI C. Summary of research on flame 3D reconstruction based on computed tomography of chemiluminescence technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 1-15 doi: 10.11729/syltlx20210148

化学发光火焰三维重建研究综述

doi: 10.11729/syltlx20210148
基金项目: 国家自然科学基金项目(U21B6003,11202204)
详细信息
    作者简介:

    冯晓鸥:(1997—),男,上海人,硕士研究生。研究方向:化学发光火焰三维重建技术。通信地址:安徽省合肥市蜀山区中国科学技术大学西校区工程科学学院力4楼(230031)。E-mail:fengxiaoou@mail.ustc.edu.cn

    通讯作者:

    E-mail:yjin@ustc.edu.cn

  • 中图分类号: O643.2+1;TK16

Summary of research on flame 3D reconstruction based on computed tomography of chemiluminescence technology

  • 摘要: 燃烧过程具有三维、高温、湍流、非稳态等特性,其精确测量存在一定的难度,一直是国内外研究的热点。化学发光计算断层成像(CTC)技术将化学发光技术和计算机断层成像(CT)技术相结合,通过直接拍摄不同角度的火焰图像,利用重构算法进行重建,可以快速准确地实现火焰三维结构的精细刻画。CTC系统以火焰的自发光作为光源,因此不需要额外的光源设备,这使得该系统具有容易搭建、可在复杂环境下实现等优势,可以用于高温、湍流火焰的实时测量,对于研究复杂燃烧流场、提高燃烧效率有着十分重要的意义。本文首先介绍了CTC技术的基本原理,然后从成像模型、重构算法、实验方法和应用方向4个方面介绍了CTC技术在火焰重构方向的研究进展,最后讨论了CTC技术的发展趋势。
  • 图  1  CTC成像原理示意图[30]

    Figure  1.  CTC imaging principle diagram[30]

    图  2  线性模型原理图[23]

    Figure  2.  Principle of Linear Model[23]

    图  3  不同焦距下的图像[37]

    Figure  3.  Images under different focal lengths[37]

    图  4  不同算法重建误差比较[30]

    Figure  4.  Comparison of reconstruction errors of different algorithms[30]

    图  5  ICCD相机及导轨[62]

    Figure  5.  ICCD camera and guide rail[62]

    图  6  3相机6投影系统[69]

    Figure  6.  Cameras and 6 projection systems[69]

    图  7  单相机结合9个光线内窥镜火焰拍摄系统示意图[77]

    Figure  7.  Single camera combined with 9 light endoscope flame shooting system[77]

    图  8  8个截面温度场三维重建效果[64]

    Figure  8.  Three-dimensional reconstruction of the temperature field of 8 sections[64]

    图  9  两个时刻超声速燃烧室中的火焰投影图[39]

    Figure  9.  Flame projection diagrams in the supersonic combustion chamber at two moments[39]

    图  10  CNN−LSTM三维火焰预测模型[98]

    Figure  10.  CNN−LSTM Three-dimensional Flame Prediction Model[98]

    表  1  CTC重构算法的发展

    Table  1.   Development of CTC reconstruction algorithms

    参考文献成像模型重建维度改进方式及成果
    [47]线性成像模型二维切片叠加改进权系数矩阵计算方法,加快了重建速度
    [49]线性成像模型二维切片叠加将问题转化为二值问题,减少了投影角数量
    [50]线性成像模型二维切片叠加提出了使用退火模拟算法求解二元函数,提高了解决二元问题的效率
    [24]线性成像模型三维重建首次提出直接三维重建方式,提高了重建精度
    [51]线性成像模型三维重建提出了基于熵最大化并结合MENT的直接三维重建算法,减少了重建误差及计算时间
    [52]线性成像模型三维重建基于Mojette变换理论,研究了在小角度情况下的重建
    [53-54]线性成像模型三维重建提出了FBP算法分别与ART算法和SART算法结合的LFBP−ART和
    LFBP−SART算法,提高了重建精度
    [30]线性成像模型三维重建提出基于光线追踪的成像模型,减少了投影数量
    [36]点扩散函数成像模型三维重建提出使用点扩散函数成像模型,引入正则化条件,提高了重建精度
    [57]点扩散函数成像模型三维重建提出了点扩散函数的简化模型
    [59-60]点扩散函数成像模型三维重建结合相机的缺陷改进了成像模型
    [61]点扩散函数成像模型三维重建考虑了火焰自吸收问题,改善了成像过程中信号衰减的问题
    下载: 导出CSV

    表  2  不同实验方法的优缺点

    Table  2.   Advantages and disadvantages of different experimental methods

    实验方法优点缺点
    直接相机拍摄法 实验布置简单;实验设备相对容易获得 多台相机的成本高;能获得的拍摄角度较少
    相机 + 反射镜法 减少了相机的使用数量,降低了硬件成本 减少的数量有限,只能降低一半的相机数量;反射镜会降低拍摄精度且反射镜角度不容易精确获得
    相机 + 光线内窥镜法 进一步减少相机的使用数量,降低成本;光纤内窥镜体积较小,相同空间内可以布置更多的投影角度 光纤束会造成光信号的损失;拍摄得到的图像信噪比相对较差
    下载: 导出CSV
  • [1] 牛文, 李文杰. 美国空军圆满完成X-51A第四次试飞[J]. 飞航导弹, 2013(5): 3–4. doi: 10.16338/j.issn.1009-1319.2013.05.004

    NIU W, LI W J. The US Air Force successfully completed the fourth test flight of the X-51A[J]. Aerodynamic Missile Journal, 2013(5): 3–4. doi: 10.16338/j.issn.1009-1319.2013.05.004
    [2] YAN Y, QIU T, LU G. Recent advances in flame tomography[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 389–399. doi: 10.1016/S1004-9541(12)60402-9
    [3] LIU S, CHEN Q, XIONG X, et al. Preliminary study on ECT imaging of flames in porous media[J]. Measurement Science and Technology, 2008, 19(9): 094017. doi: 10.1088/0957-0233/19/9/094017
    [4] ABDUL RAHIM R, CHAN K S, IBRAHIM S, et al. Fire-flame imaging using electrical capacitance tomography[J]. Jurnal Teknologi, 2006(45): 135–152. doi: 10.11113/jt.v45.335
    [5] WATERFALL R C, HE R, WHITE N B, et al. Combustion imaging from electrical impedance measurements[J]. Measurement Science and Technology, 1996, 7(3): 369–374. doi: 10.1088/0957-0233/7/3/018
    [6] HUANG S M, PLASKOWSKI A B, XIE C G, et al. Tomographic imaging of two-component flow using capacitance sensors[J]. Journal of Physics E: Scientific Instruments, 1989, 22(3): 173–177. doi: 10.1088/0022-3735/22/3/009
    [7] YANG W Q, STOTT A L, BECK M S, et al. Development of capacitance tomographic imaging systems for oil pipeline measurements[J]. Review of Scientific Instruments, 1995, 66(8): 4326–4332. doi: 10.1063/1.1145322
    [8] MOHAMAD E J, RAHIM R A, IBRAHIM S, et al. Flame imaging using laser-based transmission tomography[J]. Sensors and Actuators A: Physical, 2006, 127(2): 332–339. doi: 10.1016/j.sna.2005.12.031
    [9] WONDRACZEK L, KHORSANDI A, WILLER U, et al. Mid-infrared laser-tomographic imaging of carbon monoxide in laminar flames by difference frequency generation[J]. Combustion and Flame, 2004, 138(1-2): 30–39. doi: 10.1016/j.combustflame.2004.03.011
    [10] WANG F, CEN K F, LI N, et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy[J]. Measurement Science and Technology, 2010, 21(4): 045301. doi: 10.1088/0957-0233/21/4/045301
    [11] MA L. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4575–4583. doi: 10.1016/j.proci.2016.07.050
    [12] HUANG Q, WANG F, DONG L, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156(3): 565–573. doi: 10.1016/j.combustflame.2009.01.001
    [13] ZHOU B, WANG S M, XU C L, et al. 3D flame temperature reconstruction in optical sectioning tomography[C]//Proc of the 2009 IEEE International Workshop on Imaging Systems and Technique. 2009: 313-318.
    [14] HERTZ H M, FARIS G W. Emission tomography of flame radicals[J]. Optics Letters, 1988, 13(5): 351–353. doi: 10.1364/OL.13.000351
    [15] SMART J, LU G, YAN Y, et al. Characterisation of an oxy-coal flame through digital imaging[J]. Combustion and Flame, 2010, 157(6): 1132–1139. doi: 10.1016/j.combustflame.2009.10.017
    [16] LU G, YAN Y, COLECHIN M. A digital imaging based multifunctional flame monitoring system[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1152–1158. doi: 10.1109/TIM.2004.830571
    [17] YAN Y, LU G, COLECHIN M. Monitoring and characterisation of pulverised coal flames using digital imaging techniques[J]. Fuel, 2002, 81(5): 647–655. doi: 10.1016/S0016-2361(01)00161-2
    [18] YIP B, LAM J K, WINTER M, et al. Time-resolved three-dimensional concentration measurements in a gas jet[J]. Science, 1987, 235(4793): 1209–1211. doi: 10.1126/science.235.4793.1209
    [19] CHO K Y, SATIJA A, POURPOINT T L, et al. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion[J]. Applied Optics, 2014, 53(3): 316–326. doi: 10.1364/AO.53.000316
    [20] HARKER M R, HATTRELL T, LAWES M, et al. Measurements of the three-dimensional structure of flames at low turbulence[J]. Combustion Science and Technology, 2012, 184(10-11): 1818–1837. doi: 10.1080/00102202.2012.691775
    [21] HULT J, OMRANE A, NYGREN J, et al. Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames[J]. Experiments in Fluids, 2002, 33(2): 265–269. doi: 10.1007/s00348-002-0410-2
    [22] 宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1–11. doi: 10.11729/syltlx20190135

    SONG E Z, LEI Q C, FAN W. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1–11. doi: 10.11729/syltlx20190135
    [23] FLOYD J. Computed Tomography of Chemiluminescence: A 3D Time Resolved Sensor for Turbulent Combustion[D]. London: Imperial College London, 2009.
    [24] KANG MW, LI X, MA L. Three-dimensional flame measurements using fiber-based endoscopes[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3821–3828. doi: 10.1016/j.proci.2014.07.064
    [25] YU T, RUAN C, LIU H C, et al. Time-resolved measurements of a swirl flame at 4  kHz via computed tomography of chemiluminescence[J]. Applied Optics, 2018, 57(21): 5962–5969. doi: 10.1364/AO.57.005962
    [26] MA L, LI X S, KANG M, et al. 3D flame measurements at 5 kHz on a jet fueled aviation combustor[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-42823
    [27] MA L. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz[J]. Combustion and Flame, 2016, 165: 1–10. doi: 10.1016/j.combustflame.2015.08.026
    [28] 庄天戈. CT原理与算法[M]. 上海: 上海交通大学出版社, 1992.

    ZHUANG T G. CT principle and algorithm[M]. Shanghai: Shanghai Jiao Tong University Press, 1992.
    [29] RADON J. On the determination of functions from their integral values along certain manifolds[J]. IEEE Transactions on Medical Imaging, 1986, 5(4): 170–6. doi: 10.1109/TMI.1986.4307775
    [30] CAI W W, LI X S, LI F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6): 7050–7064. doi: 10.1364/OE.21.007050
    [31] JIANG H. Computed Tomography Principles, Design, Artifacts, and Recent Advances[M]. 2nd Edition. New York: John Wiley & Sons, Inc, 2009.
    [32] ANDERSEN A H, KAK A C. Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81–94. doi: 10.1016/0161-7346(84)90008-7
    [33] JANSEN D P, HUTCHINS D A, UNGAR P J, et al. Acoustic tomography in solids using a bent ray sirt algorithm[J]. Nondestructive Testing and Evaluation, 1991, 6(3): 131–148. doi: 10.1080/10589759108953135
    [34] ISHINO Y, OHIWA N. Three-Dimensional computerized tomographic reconstruction of instantaneous distribution of emission intensity in turbulent premixed flames[J]. Lean Combustion Technology II, 2001, 48(1): 25–29.
    [35] MOHRI K, GÖRS S, SCHÖLER J, et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385–7395. doi: 10.1364/AO.56.007385
    [36] LI X, MA L. Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence[J]. Combustion and Flame, 2015, 162(3): 642–651. doi: 10.1016/j.combustflame.2014.08.020
    [37] ZHOU B, WANG S M, XU C L, et al. 3-D flame temperature reconstruction in optical sectioning tomography[C]//Proc of the 2009 IEEE International Workshop on Imaging Systems and Techniques, Shenzhen. IEEE, 2009: 313-318. doi: 10.1109/IST.2009.5071656
    [38] CAI W W, LI X S, WICKERSHAM A, et al. Three-dimensional combustion diagnostics based on computed tomography of chemiluminescence[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine. 2013: 557. doi: 10.2514/6.2013-557
    [39] MA L, LEI Q C, WU Y, et al. 3D measurements of ignition processes at 20 kHz in a supersonic combustor[J]. Applied Physics B, 2015, 119(2): 313–318. doi: 10.1007/s00340-015-6066-4
    [40] ITO T, ICHIKAWA R, KOISHI R, et al. Measurement of space variant PSF and its application to restoring severely degraded images[C]//Proc of the SICE Annual Conference. 2008: 142-145.
    [41] ITO T, FUJII Y, OHTA N, et al. Measurement of space variant PSF for restoring degraded images by security cameras[C]//Proc of the 2006 SICE-ICASE International Joint Conference. 2007: 2542-2545.
    [42] WANG J, SONG Y, LI Z H, et al. Multi-directional 3D flame chemiluminescence tomography based on lens imaging[J]. Optics Letters, 2015, 40(7): 1231–1234. doi: 10.1364/OL.40.001231
    [43] CAI W W, LI X S, MA L. Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging[J]. Applied Optics, 2013, 52(33): 8106–8116. doi: 10.1364/AO.52.008106
    [44] YU T, CAI W W. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 2017, 56(8): 2183–2194. doi: 10.1364/AO.56.002183
    [45] 张顺利, 张定华, 李山, 等. ART算法快速图像重建研究[J]. 计算机工程与应用, 2006, 42(24): 1–3. doi: 10.3321/j.issn:1002-8331.2006.24.001

    ZHANG S L, ZHANG D H, LI S, et al. Research of fast image reconstruction on ART algorithm[J]. Computer Engineering and Applications, 2006, 42(24): 1–3. doi: 10.3321/j.issn:1002-8331.2006.24.001
    [46] 张顺利, 张定华, 赵歆波. 代数重建法中的一种快速投影系数计算方法[J]. 计算机应用研究, 2007, 24(5): 38–40. doi: 10.3969/j.issn.1001-3695.2007.05.011

    ZHANG S L, ZHANG D H, ZHAO X B. Approach for fast projection coefficient computation in algebraic reconstruction technique[J]. Application Research of Computers, 2007, 24(5): 38–40. doi: 10.3969/j.issn.1001-3695.2007.05.011
    [47] 张顺利, 张定华, 王凯, 等. 一种基于ART算法的快速图像重建技术[J]. 核电子学与探测技术, 2007, 27(3): 479–483. doi: 10.3969/j.issn.0258-0934.2007.03.015

    ZHANG S L, ZHANG D H, WANG K, et al. A fast image reconstruction technique based on ART[J]. Nuclear Electronics & Detection Technology, 2007, 27(3): 479–483. doi: 10.3969/j.issn.0258-0934.2007.03.015
    [48] CAI W W, MA L. Comparison of approaches based on optimization and algebraic iteration for binary tomography[J]. Computer Physics Communications, 2010, 181(12): 1974–1981. doi: 10.1016/j.cpc.2010.09.004
    [49] LI X, MA L. Minimizing binary functions with simulated annealing algorithm with applications to binary tomography[J]. Computer Physics Communications, 2012, 183(2): 309–315. doi: 10.1016/j.cpc.2011.10.011
    [50] GOYAL A, CHAUDHRY S, SUBBARAO P M V. Direct three dimensional tomography of flames using maximization of entropy technique[J]. Combustion and Flame, 2014, 161(1): 173–183. doi: 10.1016/j.combustflame.2013.07.024
    [51] WANG J, LI M Z, CHENG J X, et al. Exact reconstruction condition for angle-limited computed tomography of chemiluminescence[J]. Applied Optics, 2021, 60(15): 4273–4281. doi: 10.1364/AO.420223
    [52] GILABERT G, LU G, YAN Y. Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1300–1306. doi: 10.1109/TIM.2007.900161
    [53] HOSSAIN M M, LU G, YAN Y. Measurement of flame temperature distribution using optical tomographic and two-color pyrometric techniques[C]//Proc of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. 2012: 1856-1860. doi: 10.1109/I2MTC.2012.6229354
    [54] LIU H C, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107–7115. doi: 10.1364/AO.56.007107
    [55] WANG K, LI F, ZENG H, et al. Three-dimensional flame measurements with large field angle[J]. Optics express, 2017, 25(18): 21008–21018. doi: 10.1364/OE.25.021008
    [56] MA L, CAI W W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21): 3751–3759. doi: 10.1364/AO.47.003751
    [57] CAI W W, MA L. Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm[J]. Computer Physics Communications, 2010, 181(1): 11–16. doi: 10.1016/j.cpc.2009.08.001
    [58] YU T, LIU H C, CAI W W. On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence[J]. Optics Express, 2017, 25(20): 24093–24108. doi: 10.1364/OE.25.024093
    [59] YU T, LI Z M, RUAN C, et al. Development of an absorption-corrected method for 3D computed tomography of chemiluminescence[J]. Measurement Science and Technology, 2019, 30(4): 045403. doi: 10.1088/1361-6501/ab01c1
    [60] ISHINO Y, TAKEUCHI K, SHIGA S, et al. Non-scanning 3D-CT measurement with 40-lens tracking camera for turbulent propane/air rich-premixed flame[C]//Proc of the 6th International Energy Conversion Engineering Conference (IECEC). 2008: 5664. doi: 10.2514/6.2008-5664
    [61] BHEEMUL H C, LU G, YAN Y. Three-dimensional visualization and quantitative characterization of gaseous flames[J]. Measurement Science and Technology, 2002, 13(10): 1643–1650. doi: 10.1088/0957-0233/13/10/318
    [62] 万明罡. 火焰化学发光三维重建方法的研究[D]. 天津: 天津大学, 2016.

    WAN M G. Research on three-dimensional flame reconstruction method based on chemiluminescence[D]. Tianjin: Tianjin University, 2016.
    [63] LIU Y, TAN J G, WAN M G, et al. OH* and CH* chemiluminescence characteristics in low swirl methane-air flames[J]. AIP Advances, 2020, 10(5): 055318. doi: 10.1063/5.0002660
    [64] 徐萌. 基于CCD和光学层析成像算法的火焰三维温度场重建与实验研究[D]. 北京: 华北电力大学, 2016.

    XU M. Reconstruction of 3D temperature field based on CCD and optical tomography algorithm[D]. Beijing: North China Electric Power University, 2016.
    [65] LI X S, MA L. Volumetric imaging of turbulent reactive flows at kHz based on computed tomography[J]. Optics Express, 2014, 22(4): 4768–4778. doi: 10.1364/OE.22.004768
    [66] MA L, WU Y, LEI Q, et al. 3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame[J]. Combustion and Flame, 2016, 166: 66–75. doi: 10.1016/j.combustflame.2015.12.031
    [67] FLOYD J, KEMPF A M. Computed Tomography of Chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a Matrix burner[J]. Proceedings of the Combustion Institute, 2011, 33(1): 751–758. doi: 10.1016/j.proci.2010.06.015
    [68] FLOYD J, GEIPEL P, KEMPF A M. Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame[J]. Combustion and Flame, 2011, 158(2): 376–391. doi: 10.1016/j.combustflame.2010.09.006
    [69] HOSSAIN M M, LU G, YAN Y. Optical fiber imaging based tomographic reconstruction of burner flames[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1417–1425. doi: 10.1109/TIM.2012.2186477
    [70] ANIKIN N B, SUNTZ R, BOCKHORN H. Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames[J]. Applied Physics, 2010, 100(3): 675–694. doi: 10.1007/s00340-010.4051-5
    [71] ANIKIN N B, SUNTZ R, BOCKHORN H. Tomographic reconstruction of 2D-OH^-chemiluminescence distributions in turbulent diffusion flames[J]. Applied Physics B, 2012, 107(3): 591–602. doi: 10.1007/s00340-012-5003-z
    [72] HOSSAIN M M, LU G, YAN Y. Three-dimensional reconstruction of combustion flames through optical fiber sensing and CCD imaging[C]//Proc of the 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011: 1-5. doi: 10.1109/IMTC.2011.5944306
    [73] HOSSAIN M M, LU G, YAN Y. Three-dimensional reconstruction of flame temperature and emissivity through tomographic imaging and pyrometric measurement[C]//2012 IEEE International Conference on Imaging Systems and Techniques Proceedings. IEEE, 2012: 13-17.
    [74] HOSSAIN M M, LU G, YAN Y. Three-dimensional reconstruction of flame temperature and emissivity through tomographic imaging and pyrometric measurement[C]//Proc of the 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings. 2012: 13-17. doi: 10.1109/IST. 2012.6295577
    [75] KANG MW. Investigation of Endoscopic Techniques for Flow and Combustion Measurements[D]. Virginia: Virginia Tech, 2014.
    [76] LIU H, ZHAO J, SHUI C, et al. Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography[J]. Aerospace Science and Technology, 2019, 91: 422–433. doi: 10.1016/j.ast.2019.05.025
    [77] WANG K L, LI F, ZENG H, et al. Computed tomography measurement of 3D combustion chemiluminescence using single camera[C]//Proc SPIE 10155, Optical Measurement Technology and Instrumentation. 2016: 792-797. doi: 10.1117/12.2247303
    [78] ZHOU G, LI F, WANG K, et al. Research on quantitative method for three-dimensional computed tomography of chemiluminescence[J]. Applied Optics, 2020, 59(17): 5310–5318. doi: 10.1364/AO.393225
    [79] RUAN C, YU T, CHEN F, et al. Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170(MAR.1): 744–751.
    [80] ZHAO J N, LIU H C, CAI W W. Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography[J]. Applied Optics, 2019, 58(6): 1363–1373. doi: 10.1364/AO.58.001363
    [81] KANG M, WU Y, MA L. Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution[J]. Combustion and flame, 2014, 161(12): 3063–3072. doi: 10.1016/j.combustflame.2014.06.002
    [82] BOLAN J, JOHNSON K C, THUROW B S. Preliminary Investigation of Three-Dimensional Flame Measurements with a Plenoptic Camera[C]// Proc of Aiaa Aerodynamic Measurement Technology & Ground Testing Conference. 2014.
    [83] HUANG Y, YAN Y. Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis[J]. Transactions of the Institute of Measurement and Control, 2000, 22(5): 371–384. doi: 10.1177/014233120002200503
    [84] 周怀春, 娄新生, 尹鹤龄, 等. 单色火焰图象处理技术在锅炉燃烧监控中的应用研究[J]. 电力系统自动化, 1996, 20(10): 18–22.

    ZHOU H C, LOU X S, YIN H L, et al. Study on application of monochromatic flame image processing technique in combustion monitoring and control of boilers[J]. Automation of Electric Power Systems, 1996, 20(10): 18–22.
    [85] YAN Z, LIANG Q, GUO Q, et al. Experimental investigations on temperature distributions of flame sections in a bench-scale opposed multi-burner gasifier[J]. Applied Energy, 2009, 86(7-8): 1359–1364. doi: 10.1016/j.apenergy.2008.09.020
    [86] LIU D, HUANG Q, WANG F, et al. Simultaneous Measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or Asymmetric small unconfined flames with CCD Cameras[J]. Journal of Heat Transfer, 2010, 132(6): 1. doi: 10.1115/1.4000752
    [87] TIMMERMAN B H, BRYANSTON-CROSS P J. Optical investigation of heat release and NOx production in combustion[J]. Journal of Physics:Conference Series, 2007, 85: 012007. doi: 10.1088/1742-6596/85/1/012007
    [88] SAMARASINGHE J, PELUSO S, SZEDLMAYER M, et al. Three-dimensional chemiluminescence imaging of unforced and forced swirl-stabilized flames in a lean premixed multi-nozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10): 101503. doi: 10.1115/1.4024987
    [89] SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 031502. doi: 10.1115/1.4031439
    [90] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51: 357–377. doi: 10.1146/annurev-fluid-010518-040547
    [91] WANG Z Y, SONG C F, CHEN T. Deep learning based monitoring of furnace combustion state and measurement of heat release rate[J]. Energy, 2017, 131: 106–112. doi: 10.1016/j.energy.2017.05.012
    [92] PÁL T, ATTILA G, BERNADETT G. Image-based deep neural network prediction of the heat output of a step-grate biomass boiler[J]. Applied Energy, 2017, 200: 155–169. doi: 10.1016/j.apenergy.2017.05.080
    [93] YU T, CAI W W, LIU Y Z. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics[J]. The Review of Scientific Instruments, 2018, 89(4): 043101. doi: 10.1063/1.5016403[PubMed
    [94] HUANG J, LIU H, WANG Q, et al. Limited-projection volumetric tomography for time-resolved turbulent combustion diagnostics via deep learning[J]. Aerospace Science and Technology, 2020, 106: 106123. doi: 10.1016/j.ast.2020.106123
    [95] FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics, 2019, 870: 106–120. doi: 10.1017/jfm.2019.238
    [96] FUKAMI K, FUKAGATA K, TAIRA K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows[J]. Journal of Fluid Mechanics, 2021, 909: A9. doi: 10.1017/jfm.2020.948
    [97] PAN H J, ZHANG F H, LI X S, et al. Learning implicit light propagation from multi-flame projections for computed tomography of chemiluminescence[J]. Applied Optics, 2021, 60(22): 6469–6478. doi: 10.1364/AO.427578
    [98] HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3D flame evolution from its history 2D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875: R2. doi: 10.1017/jfm.2019.545
    [99] YU T, LIU H C, ZHANG J Q, et al. Toward real-time volumetric tomography for combustion diagnostics via dimension reduction[J]. Optics Letters, 2018, 43(5): 1107–1110. doi: 10.1364/OL.43.001107
    [100] CHENG Y T, CHI F, WANG J J, et al. 3-D flame chemiluminescence tomography imaging under limited projection angle conditions: constraints and improving[C]//Proc of the 2019 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments. 2020. doi: 10.1117/12.2548769
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  135
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-01-03
  • 录用日期:  2022-01-24
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日