Optimization of total enthalpy measurement method based on the total temperature probe
-
摘要: 为提高中低焓来流的总焓测量精准度,以铱铑铱热电偶为测温元件研制了一种总温探针。基于流热耦合计算模型对该探针各部件尺寸参数进行了优化设计,使得总温探针的复温率不低于0.9;计算和试验结果表明铱铑铱热电偶结点温度会随着热电偶后端面温度和屏蔽罩温度的升高而缓慢升高,导致不同测量时间段下得到的总温值不同,因此必须规定测量时间段并进行溯源校准。为此,借助一种新设计的加热器弧室总温探针,将应用于电弧风洞超声速流场的总温探针向国内仅有的亚声速流场总温校准装置进行了溯源校准。在电弧风洞中开展了总焓测量验证试验,采用基于精度极限和偏差极限的不确定度评估方法,计算了总焓测量结果的不确定度。结果表明:所研制的总温探针具有较高的总焓测量精准度,就本文试验结果而言,其重复性精度约为3%,不确定度为6.4%。Abstract: A kind of total temperature probe with Iridium Rhodium Iridium thermocouple is developed for improving the total enthalpy measurement accuracy. The size parameters of each component are optimized based on the fluid-thermal coupling model of the probe. The reheating rate of the probe is not less than 0.9 after optimization. The calculation and test results show that the temperature of the thermocouple node rises slowly as the temperature of the thermocouple tail and the shielding case rises. This fact results in the temperature of thermocouple node changing according to the measurement time period. So the measurement time period of the total temperature value should be regulated and the total temperature value must be calibrated. Therefore, a comparison calibration method is proposed, in which the total temperature probe used in the supersonic flow field can be traced to the standard calibration device in the subsonic flow field by an arc chamber total probe developed. Finally, the total enthalpy measurement test based on the total temperature probe is carried out in the arc heated wind tunnel. And the uncertainty of the total enthalpy measurement is calculated according to the uncertainty evaluation method based on the precision limit and deviation limit. The test results show that the total temperature probe has a high total enthalpy measurement accuracy. The repeatability precision is about 3% and the uncertainty is 6.4% in this test.
-
表 1 不同计算工况下的复温率
Table 1. The retemperature rate under different working conditions
工况 来流状态 屏蔽罩后端面温度/K 热电偶后端面温度/K 是否有辐射换热 热电偶结点温度/K 复温率R 1 总温1403 K
总压425 kPa1100 1100 有 1305 0.930 2 绝热 1100 有 1352 0.964 3 绝热 绝热 有 1399 0.997 4 550(静温) 1100 有 1271 0.906 5 550(静温) 1100 无 1335 0.952 6 总温2021 K
总压159 kPa1700 1700 有 1898 0.939 7 绝热 1700 有 1988 0.984 8 绝热 绝热 有 2011 0.995 9 674(静温) 1700 有 1678 0.875 10 674(静温) 1700 无 1968 0.974 表 2 总温探针A和B的测量结果比对
Table 2. The test results comparison between the total temperature probe A and probe B
来流
状态电功率
/MW总压
/kPaH0A
/(MJ·kg−1)H0B
/(MJ·kg−1)η a 2.78 197 0.879 0.911 1.022 b 3.97 212 1.348 1.385 1.022 c 5.26 256 1.631 1.655 1.022 表 3 总温探针A的总焓测量结果
Table 3. The total enthalpy measurement results based on the total temperature probe A
试验
车次电功率
/MW总压
/kPaT0A
/(MJ·kg−1)H0A
/(MJ·kg−1)$\overline H_{0{\rm{A}}} $
/(MJ·kg−1)d–1 2.53 424 1434 1.538 1.528 d–2 2.55 426 1461 1.569 1.528 d–3 2.58 429 1380 1.478 1.528 e–1 2.47 367 1679 1.813 1.758 e–2 2.50 370 1581 1.703 1.758 e–3 — — — — — f–1 4.19 629 2065 2.336 2.290 f–2 4.20 635 2023 2.271 2.290 f–3 4.17 629 2018 2.264 2.290 -
[1] MARREN D, LU F. Advanced hypersonic test facilities[M]. Reston, VA: AIAA, 2002. DOI: 10.2514/4.866678 [2] 朱晓军,李锋,欧东斌,等. 典型部件疏导式热防护试验技术研究[J]. 实验力学,2020,35(4):681-687. doi: 10.7520/1001-4888-18-186ZHU X J,LI F,OU D B,et al. Investigation on testing technology of typical component dredging thermal protection[J]. Journal of Experimental Mechanics,2020,35(4):681-687. doi: 10.7520/1001-4888-18-186 [3] 章胜,周宇,钱炜琪,等. 基于网格自适应的飞行器防热材料热传导系数辨识[J]. 宇航学报,2019,40(4):396-405. doi: 10.3873/j.issn.1000-1328.2019.04.004ZHANG S,ZHOU Y,QIAN W Q,et al. Identification of vehicle heat shield material thermal conductivity based on mesh adaptation[J]. Journal of Astronautics,2019,40(4):396-405. doi: 10.3873/j.issn.1000-1328.2019.04.004 [4] SHEELEY J. Arc heated wind tunnel failure prediction using artificial neural networks[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 898. doi: 10.2514/6.2005-898 [5] 傅杨奥骁,董维中,丁明松,等. 高焓电弧风洞试验热化学非平衡流场数值模拟[J]. 实验流体力学,2019,33(3):1-12. doi: 10.11729/syltlx2018013FU-YANG A X,DONG W Z,DING M S,et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics,2019,33(3):1-12. doi: 10.11729/syltlx2018013 [6] 杨远剑,陈德江,赵文峰,等. 电弧风洞转动部件动密封试验[J]. 空气动力学学报,2017,35(6):828-831. doi: 10.7638/kqdlxxb-2015.0147YANG Y J,CHEN D J,ZHAO W F,et al. Seal complementation test for ratable parts in arc heated wind tunnel[J]. Acta Aerodynamica Sinica,2017,35(6):828-831. doi: 10.7638/kqdlxxb-2015.0147 [7] MATSUI M,KOMURASAKI K,ARAKAWA Y,et al. Enthalpy measurement of inductively heated airflow[J]. Journal of Spacecraft and Rockets,2008,45(1):155-158. doi: 10.2514/1.34369 [8] WINTER M W, SRINIVASAN C, CHARNIGO R. Non-equilibrium analysis of emission spectroscopy data taken in the freestream of the NASA IHF arc jet facility[C]//Proc of the 46th AIAA Plasmadynamics and Lasers Conference. 2015: 2963. doi: 10.2514/6.2015-2963 [9] SUESS L E, J D MILHOAN, OELKE L, et al. Enthalpy distributions of arc jet flow based on measured laser induced fluorescence, and heat flux and stagnation pressure distributions[C]//Proc of the 42nd AIAA Thermophysics Conference. 2011: 3778. doi: 10.2514/6.2011-3778 [10] FAY J A,RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences,1958,25(2):73-85. doi: 10.2514/8.7517 [11] 朱新新,隆永胜,石友安,等. 稳态焓探针的优化设计与试验验证[J]. 实验流体力学,2020,34(4):87-93. doi: 10.11729/syltlx20190062ZHU X X,LONG Y S,SHI Y A,et al. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics,2020,34(4):87-93. doi: 10.11729/syltlx20190062 [12] MARVIN J G,POPE R B. Laminar convective heating and ablation in the Mars atmosphere[J]. AIAA Journal,1967,5(2):240-248. doi: 10.2514/3.3948 [13] YAKUSHIN M I, PERSHIN I S, KOLESNIKOV A F, An experimental study of stagnation point heat transfer from high-enthalpy reacting gas flow to surface with catalysis and gas injection[C]//Proc of the 4th Symposium on Aerothermodynamics for Space Vehicles: co-sponsored by European Space Agency. 2002: 473. [14] LÖHLE S,STEINBECK A,FASOULAS S. Local mass-specific enthalpy measurements with a new mass injection probe[J]. Journal of Thermophysics and Heat Transfer,2016,30(2):301-307. doi: 10.2514/1.t4709 [15] 戚隆溪. 双声速总焓探针的研制和应用[J]. 气动实验测控技术,1981,3:25-30.QI L X. The development and application of double sonic enthalpy probe[J]. Measurement and Control Technology of Aerodynamic Experiment,1981,3:25-30. [16] 戚隆溪,王柏懿. 高温气流总焓的测量及微型瞬时探针的研制[J]. 流体力学实验与测量,1997,11(1):70-76.QI L X,WANG B Y. Measurement methods and miniature probe for total enthalpy of high-temperature gas streams[J]. Experiments and Measurements in Fluid Mechanics,1997,11(1):70-76. [17] 朱新新,杨庆涛,陈卫,等. 高温气流总焓测试技术综述[J]. 计测技术,2018,38(5):5-11. doi: 10.11823∕j.issn.1674-5795.2018.05.02ZHU X X,YANG Q T,CHEN W,et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology,2018,38(5):5-11. doi: 10.11823∕j.issn.1674-5795.2018.05.02 [18] 中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003. [19] 杨海滨,胥继斌,白本奇,等. 高超声速风洞流场总温测量装置研制[J]. 传感技术学报,2021,34(2):268-273. doi: 10.3969/j.issn.1004-1699.2021.02.020YANG H B,XU J B,BAI B Q,et al. Development of total temperature measurement equipment in hypersonic wind tunnel flowfields[J]. Chinese Journal of Sensors and Actuators,2021,34(2):268-273. doi: 10.3969/j.issn.1004-1699.2021.02.020 [20] MURTHY A V,TSAI B K,SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology,2000,105(2):293-305. doi: 10.6028/jres.105.033 [21] WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034 [22] 战培国, 杨炯. 美国AIAA风洞试验标准汇编[M]. 北京: 国防工业出版社, 2015: 297-308.ZHAN P G, YANG J. United States of America AIAA wind tunnel test standard assembly[M]. Beijing: National Defence Industry Press, 2015: 297-308. -