留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于总温探针的高精度总焓测量方法优化研究

朱新新 隆永胜 赵顺洪 杨远剑 李泽禹 赵文峰

朱新新,隆永胜,赵顺洪,等. 基于总温探针的高精度总焓测量方法优化研究[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20210149
引用本文: 朱新新,隆永胜,赵顺洪,等. 基于总温探针的高精度总焓测量方法优化研究[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20210149
ZHU X X,LONG Y S,ZHAO S H,et al. Optimization of total enthalpy measurement method based on the total temperature probe[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20210149
Citation: ZHU X X,LONG Y S,ZHAO S H,et al. Optimization of total enthalpy measurement method based on the total temperature probe[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20210149

基于总温探针的高精度总焓测量方法优化研究

doi: 10.11729/syltlx20210149
详细信息
    作者简介:

    朱新新:(1988—),男,云南保山人,硕士,助理研究员。研究方向:气动热与热防护试验测试技术。通信地址:四川省绵阳市二环路南段6号15信箱504分箱(621000)。E-mail:xinxincomplex@126.com

    通讯作者:

    E-mail:lzy@163.com

  • 中图分类号: V441

Optimization of total enthalpy measurement method based on the total temperature probe

  • 摘要: 为提高中低焓来流的总焓测量精准度,以铱铑铱热电偶为测温元件研制了一种总温探针。基于流热耦合计算模型对该探针各部件尺寸参数进行了优化设计,使得总温探针的复温率不低于0.9;计算和试验结果表明铱铑铱热电偶结点温度会随着热电偶后端面温度和屏蔽罩温度的升高而缓慢升高,导致不同测量时间段下得到的总温值不同,因此必须规定测量时间段并进行溯源校准。为此,借助一种新设计的加热器弧室总温探针,将应用于电弧风洞超声速流场的总温探针向国内仅有的亚声速流场总温校准装置进行了溯源校准。在电弧风洞中开展了总焓测量验证试验,采用基于精度极限和偏差极限的不确定度评估方法,计算了总焓测量结果的不确定度。结果表明:所研制的总温探针具有较高的总焓测量精准度,就本文试验结果而言,其重复性精度约为3%,不确定度为6.4%。
  • 图  1  总温探针结构示意图

    Figure  1.  Total temperature probe structure

    图  2  计算模型

    Figure  2.  Calculation model

    图  3  气流马赫数分布

    Figure  3.  Airflow Mach-number distribution

    图  4  流固温度分布

    Figure  4.  Fluid-solid temperature distribution

    图  7  2个总温探针的测试曲线

    Figure  7.  The test curve of two total temperature probes

    图  5  总焓测量试验照片

    Figure  5.  The total enthalpy measurement test photo

    图  6  总温探针校准过程

    Figure  6.  The process of calibrating the total temperature probe

    表  1  不同计算工况下的复温率

    Table  1.   The retemperature rate under different working conditions

    工况来流状态屏蔽罩后端面温度/K热电偶后端面温度/K是否有辐射换热热电偶结点温度/K复温率R
    1总温1403 K
    总压425 kPa
    1100110013050.930
    2绝热110013520.964
    3绝热绝热13990.997
    4550(静温)110012710.906
    5550(静温)110013350.952
    6总温2021 K
    总压159 kPa
    1700170018980.939
    7绝热170019880.984
    8绝热绝热20110.995
    9674(静温)170016780.875
    10674(静温)170019680.974
    下载: 导出CSV

    表  2  总温探针A和B的测量结果比对

    Table  2.   The test results comparison between the total temperature probe A and probe B

    来流
    状态
    电功率
    /MW
    总压
    /kPa
    H0A
    /(MJ·kg−1
    H0B
    /(MJ·kg−1
    η
    a2.781970.8790.911 1.022
    b3.972121.3481.385 1.022
    c5.262561.6311.655 1.022
    下载: 导出CSV

    表  3  总温探针A的总焓测量结果

    Table  3.   The total enthalpy measurement results based on the total temperature probe A

    试验
    车次
    电功率
    /MW
    总压
    /kPa
    T0A
    /(MJ·kg−1
    H0A
    /(MJ·kg−1
    $\overline H_{0{\rm{A}}} $
    /(MJ·kg−1
    d–12.5342414341.5381.528
    d–22.5542614611.569 1.528
    d–32.5842913801.478 1.528
    e–12.4736716791.8131.758
    e–22.5037015811.703 1.758
    e–3
    f–14.1962920652.3362.290
    f–24.2063520232.271 2.290
    f–34.1762920182.264 2.290
    下载: 导出CSV
  • [1] MARREN D, LU F. Advanced hypersonic test facilities[M]. Reston, VA: AIAA, 2002. DOI: 10.2514/4.866678
    [2] 朱晓军,李锋,欧东斌,等. 典型部件疏导式热防护试验技术研究[J]. 实验力学,2020,35(4):681-687. doi: 10.7520/1001-4888-18-186

    ZHU X J,LI F,OU D B,et al. Investigation on testing technology of typical component dredging thermal protection[J]. Journal of Experimental Mechanics,2020,35(4):681-687. doi: 10.7520/1001-4888-18-186
    [3] 章胜,周宇,钱炜琪,等. 基于网格自适应的飞行器防热材料热传导系数辨识[J]. 宇航学报,2019,40(4):396-405. doi: 10.3873/j.issn.1000-1328.2019.04.004

    ZHANG S,ZHOU Y,QIAN W Q,et al. Identification of vehicle heat shield material thermal conductivity based on mesh adaptation[J]. Journal of Astronautics,2019,40(4):396-405. doi: 10.3873/j.issn.1000-1328.2019.04.004
    [4] SHEELEY J. Arc heated wind tunnel failure prediction using artificial neural networks[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 898. doi: 10.2514/6.2005-898
    [5] 傅杨奥骁,董维中,丁明松,等. 高焓电弧风洞试验热化学非平衡流场数值模拟[J]. 实验流体力学,2019,33(3):1-12. doi: 10.11729/syltlx2018013

    FU-YANG A X,DONG W Z,DING M S,et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics,2019,33(3):1-12. doi: 10.11729/syltlx2018013
    [6] 杨远剑,陈德江,赵文峰,等. 电弧风洞转动部件动密封试验[J]. 空气动力学学报,2017,35(6):828-831. doi: 10.7638/kqdlxxb-2015.0147

    YANG Y J,CHEN D J,ZHAO W F,et al. Seal complementation test for ratable parts in arc heated wind tunnel[J]. Acta Aerodynamica Sinica,2017,35(6):828-831. doi: 10.7638/kqdlxxb-2015.0147
    [7] MATSUI M,KOMURASAKI K,ARAKAWA Y,et al. Enthalpy measurement of inductively heated airflow[J]. Journal of Spacecraft and Rockets,2008,45(1):155-158. doi: 10.2514/1.34369
    [8] WINTER M W, SRINIVASAN C, CHARNIGO R. Non-equilibrium analysis of emission spectroscopy data taken in the freestream of the NASA IHF arc jet facility[C]//Proc of the 46th AIAA Plasmadynamics and Lasers Conference. 2015: 2963. doi: 10.2514/6.2015-2963
    [9] SUESS L E, J D MILHOAN, OELKE L, et al. Enthalpy distributions of arc jet flow based on measured laser induced fluorescence, and heat flux and stagnation pressure distributions[C]//Proc of the 42nd AIAA Thermophysics Conference. 2011: 3778. doi: 10.2514/6.2011-3778
    [10] FAY J A,RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences,1958,25(2):73-85. doi: 10.2514/8.7517
    [11] 朱新新,隆永胜,石友安,等. 稳态焓探针的优化设计与试验验证[J]. 实验流体力学,2020,34(4):87-93. doi: 10.11729/syltlx20190062

    ZHU X X,LONG Y S,SHI Y A,et al. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics,2020,34(4):87-93. doi: 10.11729/syltlx20190062
    [12] MARVIN J G,POPE R B. Laminar convective heating and ablation in the Mars atmosphere[J]. AIAA Journal,1967,5(2):240-248. doi: 10.2514/3.3948
    [13] YAKUSHIN M I, PERSHIN I S, KOLESNIKOV A F, An experimental study of stagnation point heat transfer from high-enthalpy reacting gas flow to surface with catalysis and gas injection[C]//Proc of the 4th Symposium on Aerothermodynamics for Space Vehicles: co-sponsored by European Space Agency. 2002: 473.
    [14] LÖHLE S,STEINBECK A,FASOULAS S. Local mass-specific enthalpy measurements with a new mass injection probe[J]. Journal of Thermophysics and Heat Transfer,2016,30(2):301-307. doi: 10.2514/1.t4709
    [15] 戚隆溪. 双声速总焓探针的研制和应用[J]. 气动实验测控技术,1981,3:25-30.

    QI L X. The development and application of double sonic enthalpy probe[J]. Measurement and Control Technology of Aerodynamic Experiment,1981,3:25-30.
    [16] 戚隆溪,王柏懿. 高温气流总焓的测量及微型瞬时探针的研制[J]. 流体力学实验与测量,1997,11(1):70-76.

    QI L X,WANG B Y. Measurement methods and miniature probe for total enthalpy of high-temperature gas streams[J]. Experiments and Measurements in Fluid Mechanics,1997,11(1):70-76.
    [17] 朱新新,杨庆涛,陈卫,等. 高温气流总焓测试技术综述[J]. 计测技术,2018,38(5):5-11. doi: 10.11823∕j.issn.1674-5795.2018.05.02

    ZHU X X,YANG Q T,CHEN W,et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology,2018,38(5):5-11. doi: 10.11823∕j.issn.1674-5795.2018.05.02
    [18] 中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003.
    [19] 杨海滨,胥继斌,白本奇,等. 高超声速风洞流场总温测量装置研制[J]. 传感技术学报,2021,34(2):268-273. doi: 10.3969/j.issn.1004-1699.2021.02.020

    YANG H B,XU J B,BAI B Q,et al. Development of total temperature measurement equipment in hypersonic wind tunnel flowfields[J]. Chinese Journal of Sensors and Actuators,2021,34(2):268-273. doi: 10.3969/j.issn.1004-1699.2021.02.020
    [20] MURTHY A V,TSAI B K,SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology,2000,105(2):293-305. doi: 10.6028/jres.105.033
    [21] WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034
    [22] 战培国, 杨炯. 美国AIAA风洞试验标准汇编[M]. 北京: 国防工业出版社, 2015: 297-308.

    ZHAN P G, YANG J. United States of America AIAA wind tunnel test standard assembly[M]. Beijing: National Defence Industry Press, 2015: 297-308.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  131
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2021-12-04
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日