留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液池深度对水滴撞击水面后形态特征影响的实验研究

徐多广 许婉 袁德奎

徐多广, 许婉, 袁德奎. 液池深度对水滴撞击水面后形态特征影响的实验研究[J]. 实验流体力学, 2023, 37(2): 46-55 doi: 10.11729/syltlx20210153
引用本文: 徐多广, 许婉, 袁德奎. 液池深度对水滴撞击水面后形态特征影响的实验研究[J]. 实验流体力学, 2023, 37(2): 46-55 doi: 10.11729/syltlx20210153
XU D G, XU W, YUAN D K. Experimental study on influence of liquid depth on morphological characteristics after droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 46-55 doi: 10.11729/syltlx20210153
Citation: XU D G, XU W, YUAN D K. Experimental study on influence of liquid depth on morphological characteristics after droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 46-55 doi: 10.11729/syltlx20210153

液池深度对水滴撞击水面后形态特征影响的实验研究

doi: 10.11729/syltlx20210153
基金项目: 国家自然科学基金项目(11872271);天津市科技重大专项与工程项目(18ZXRHSF00270)
详细信息
    作者简介:

    徐多广:(1999—),男,天津人,学士。研究方向:海洋动力与环境。通信地址:天津市津南区天津大学北洋园校区36–411(300354)。E-mail:xdg1999@tju.edu.cn

    通讯作者:

    E-mail:dkyuan@tju.edu.cn

  • 中图分类号: O351.2

Experimental study on influence of liquid depth on morphological characteristics after droplet impact

  • 摘要: 用实验方法对液滴撞击液面后的形态特征及其机理进行了研究。用高速摄像机记录了不同液池深度下的液滴撞击液面过程,总结出了在不同阶段出现的液坑、液冠、中心射流和次生液滴等特征现象。基于计算机视觉算法开发了图像处理程序,实现了特征几何参数的自动提取。讨论了液池深度、韦伯数、初始液滴直径和液滴下落高度等因素对特征运动形态的影响。结果表明:在韦伯数一定的情况下,当液池深度跨越某个临界值时,液坑、液冠、中心射流和次生液滴等特征现象发生显著变化;液冠–液坑高度比随韦伯数的增大在一定范围内增大;中心射流能否分离出次生液滴与液池深度和初始液滴直径有密切的关系。
  • 图  1  实验装置示意图

    Figure  1.  Experimental setup

    图  2  液滴撞击液面后的发展过程

    Figure  2.  Process of liquid droplet impact on liquid surface

    图  3  原始图像(左)与轮廓提取图像(右)

    Figure  3.  Original image (left) and contour-extractioned image (right)

    图  4  不同液池深度下的最高液冠形态

    Figure  4.  The highest crown for different liquid depths

    图  5  不同液池深度下的液冠–液坑高度比与We的关系

    Figure  5.  Relationship between crown-pit height ratio and We for different liquid depths

    图  6  不同液池深度下的中心射流发展过程

    Figure  6.  Development of central jet for different liquid depths

    图  7  不同液池深度下的中心液柱最大高度–液滴直径比与We的关系

    Figure  7.  Relationship of ratio of the maximum central jet height to droplet diameter and We for different liquid depths

    图  8  本文实验与马慧敏等[22]的实验中液柱最大高度–液滴直径比与We的数据点分布及线性拟合

    Figure  8.  The data point distribution and linear fitting of the ratio of the maximum central jet height to droplet diameter and We in the experiment of this paper (deep liquid pool) and Ma's experiment

    表  1  实验方案及参数

    Table  1.   Experimental scheme and parameters

    实验参数数值
    密度ρ/(kg·m−3)996.2
    表面张力σ/(N·m−1)0.0715
    动力黏性系数μ/(N·s·m2)0.000836
    液滴下落高度h/mm400, 510, 640, 790, 940,
    1110, 1300, 1500
    液池深度D/mm3, 5, 7, 10, 13
    初始液滴直径d/mm2.67 ± 0.04, 3.16 ± 0.09,
    3.71 ± 0.06
    We290~1509
    下载: 导出CSV

    表  2  不同实验组次分离次生液滴的情况

    Table  2.   Separation of secondary droplets in different groups

    液滴直径/mm 液池深度/mm下落高度/mm
    400510640790111013001500
    3.71
    13
    10
    7
    51/3是2/3是
    3
    3.16
    13
    10
    7
    51/3是
    3
    2.67
    13
    10
    7
    5
    3
    说明:“是”表示分离次生液滴;“否”表示不分离次生液滴;“1/3是”表示每组实验重复3次,其中1次会分离;“2/3是”表示每组实验重复3次,其中2次会分离。
    下载: 导出CSV
  • [1] WORTHINGTON A M. On the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London, 1877, 25(171-178): 261–272. doi: 10.1098/rspl.1876.0048
    [2] WORTHINGTON A M, COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1897, 189: 137–148. doi: 10.1098/rsta.1897.0005
    [3] SAHA A, WEI Y J, TANG X Y, et al. Kinematics of vortex ring generated by a drop upon impacting a liquid pool[J]. Journal of Fluid Mechanics, 2019, 875: 842–853. doi: 10.1017/jfm.2019.503
    [4] OKAWA T, SHIRAISHI T, MORI T. Production of secondary drops during the single water drop impact onto a plane water surface[J]. Experiments in Fluids, 2006, 41(6): 965–974. doi: 10.1007/s00348-006-0214-x
    [5] ROISMAN I V, VAN HINSBERG N P, TROPEA C. Propagation of a kinematic instability in a liquid layer: capillary and gravity effects[J]. Physical Review E: Statisti-cal, Nonlinear & Soft Matter Physics, 2008, 77(4): 046305. doi: 10.1103/PhysRevE.77.046305
    [6] VAN HINSBERG N P, BUDAKLI M, GÖHLER S, et al. Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses[J]. Journal of Colloid and Interface Science, 2010, 350(1): 336–343. doi: 10.1016/j.jcis.2010.06.015
    [7] MANZELLO S L, YANG J C. An experimental study of a water droplet impinging on a liquid surface[J]. Experiments in Fluids, 2002, 32(5): 580–589. doi: 10.1007/s00348-001-0401-8
    [8] CASTILLO-OROZCO E, DAVANLOU A, CHOUDHURY P K, et al. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets[J]. Physical Review E: Statistical, Nonlinear & Soft Matter Physics, 2015, 92(5): 053022. doi: 10.1103/PhysRevE.92.053022
    [9] 马慧敏, 刘长根, 李旭, 等. 液滴冲击液面过程中变形特征的实验研究[J]. 实验力学, 2019, 34(4): 600–608. doi: 10.7520/1001-4888-18-016

    MA H M, LIU C G, LI X, et al. Experimental study of deformation characteristics during the process of liquid drop impact liquid surface[J]. Journal of Experimental Mechanics, 2019, 34(4): 600–608. doi: 10.7520/1001-4888-18-016
    [10] 郭通, 袁德奎, 赵丰泽. 液滴撞击液面形成的液坑形态特征及其重力势能分析[J]. 实验流体力学, 2021, 35(6): 17–27. doi: 10.11729/syltlx20200128

    GUO T, YUAN D K, ZHAO F Z. Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 17–27. doi: 10.11729/syltlx20200128
    [11] 徐明俊. 单液滴与着火液体相互作用动力学特性研究[D]. 合肥: 中国科学技术大学, 2018.

    XU M J. Study of drop impact dynamics on burning liquid[D]. Hefei: University of Science and Technology of China, 2018.
    [12] ENGEL O G. Crater depth in fluid impacts[J]. Journal of Applied Physics, 1966, 37(4): 1798–1808. doi: 10.1063/1.1708605
    [13] FEDORCHENKO A I, WANG A B. On some common features of drop impact on liquid surfaces[J]. Physics of Fluids, 2004, 16(5): 1349–1365. doi: 10.1063/1.1652061
    [14] XU M J, LI C H, WU C P, et al. Regimes during single water droplet impacting on hot ethanol surface[J]. International Journal of Heat and Mass Transfer, 2018, 116: 817–824. doi: 10.1016/j.ijheatmasstransfer.2017.09.030
    [15] MACKLIN W C, HOBBS P V. Subsurface phenomena and the splashing of drops on shallow liquids[J]. Science, 1969, 166(3901): 107–108. doi: 10.1126/science.166.3901.107
    [16] MACKLIN W C, METAXAS G J. Splashing of drops on liquid layers[J]. Journal of Applied Physics, 1976, 47(9): 3963–3970. doi: 10.1063/1.323218
    [17] PUMPHREY H C, ELMORE P A. The entrainment of bubbles by drop impacts[J]. Journal of Fluid Mechanics, 1990, 220: 539–567. doi: 10.1017/s0022112090003378
    [18] LENG L J. Splash formation by spherical drops[J]. Journal of Fluid Mechanics, 2001, 427: 73–105. doi: 10.1017/s0022112000002500
    [19] OGUZ H N, PROSPERETTI A. Bubble entrainment by the impact of drops on liquid surfaces[J]. Journal of Fluid Mechanics, 1990, 219: 143. doi: 10.1017/s0022112090002890
    [20] NIKOLOPOULOS N, THEODORAKAKOS A, BERGELES G. Three-dimensional numerical investigation of a droplet impinging normally onto a wall film[J]. Journal of Computational Physics, 2007, 225(1): 322–341. doi: 10.1016/j.jcp.2006.12.002
    [21] NIKOLOPOULOS N, THEODORAKAKOS A, BERGELES G. Normal impingement of a droplet onto a wall film: a numerical investigation[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 119–132. doi: 10.1016/j.ijheatfluidflow.2004.06.002
    [22] 马慧敏, 刘长根, 董娇娇. 液滴冲击液面变形特征及其能量转化研究[J]. 水动力学研究与进展(A辑), 2019, 34(3): 283–290. doi: 10.16076/j.cnki.cjhd.2019.03.002

    MA H M, LIU C G, DONG J J. Study of deformation characteristics and energy conversion during the process of droplet impacting on liquid surface[J]. Chinese Journal of Hydrodynamics, 2019, 34(3): 283–290. doi: 10.16076/j.cnki.cjhd.2019.03.002
    [23] VANDER WAL R L, BERGER G M, MOZES S D. Droplets splashing upon films of the same fluid of various depths[J]. Experiments in Fluids, 2006, 40(1): 33–52. doi: 10.1007/s00348-005-0044-2
    [24] COLE D E. The splashing morphology of liquid-liquid impacts[D]. Queensland: James Cook University, 2007.
    [25] COSSALI G E, MARENGO M, COGHE A, et al. The role of time in single drop splash on thin film[J]. Experiments in Fluids, 2004, 36(6): 888–900. doi: 10.1007/s00348-003-0772-0
    [26] HALLETT J, CHRISTENSEN L. Splash and penetration of drops in water[J]. Journal de Recherches Atmospheriques, 1984, 18(4): 225–242.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  93
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2022-01-19
  • 录用日期:  2022-01-21
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日