留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斑马鱼C型机动运动数据重构与性能分析

刘元森 余永亮 鲍麟 高梦忱

刘元森, 余永亮, 鲍麟, 等. 斑马鱼C型机动运动数据重构与性能分析[J]. 实验流体力学, 2023, 37(2): 25-35 doi: 10.11729/syltlx20210172
引用本文: 刘元森, 余永亮, 鲍麟, 等. 斑马鱼C型机动运动数据重构与性能分析[J]. 实验流体力学, 2023, 37(2): 25-35 doi: 10.11729/syltlx20210172
LIU Y S, YU Y L, BAO L, et al. The kinematics and performance of zebrafish C-shaped maneuvering[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 25-35 doi: 10.11729/syltlx20210172
Citation: LIU Y S, YU Y L, BAO L, et al. The kinematics and performance of zebrafish C-shaped maneuvering[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 25-35 doi: 10.11729/syltlx20210172

斑马鱼C型机动运动数据重构与性能分析

doi: 10.11729/syltlx20210172
基金项目: 国家自然科学基金项目(12172355,11672291);中央高校基本科研业务费专项资金项目(E1E42204)
详细信息
    作者简介:

    刘元森:(1996—),男,山东淄博人,博士研究生。研究方向:生物运动力学。通信地址:北京市石景山区玉泉路中国科学院大学(100049)。E-mail:liuyuansen18@mails.ucas.edu.cn

    通讯作者:

    E-mail:ylyu@ucas.ac.cn

  • 中图分类号: Q66

The kinematics and performance of zebrafish C-shaped maneuvering

  • 摘要: 在鱼类机动性能研究中,获取高精度运动学和动力学实验数据至关重要。本文搭建基于机器视觉的高速摄影平台,获取了斑马鱼C型机动运动的顶视序列图像;使用数学形态学算法提取图像中的鱼体外轮廓和中线,建立了简化的三维鱼体模型;通过“鱼–水”系统的动量和动量矩守恒算法,获得鱼体的运动学数据,并分析了作用于鱼体的流体动力和机械能的变化规律。在鱼体模型建立过程中,对尾鳍进行面积的二阶矩等效处理,完成了尾鳍长度的合理修正。经一系列标准算例验证,采用数字图像处理技术重构的动力学数据与标准模型误差在3.1%以内。结果表明:鱼体C型机动运动中最大加速度与最大角加速度存在线性关系;C型起动中平动能占主导,C型转弯中转动能占主导。
  • 图  1  斑马鱼动作捕获实验平台示意图

    Figure  1.  Sketch map of experimental platform for zebrafish swimming

    图  2  C型起动过程中典型动作的拍摄效果

    Figure  2.  Typical images of a C-start motion

    图  3  鱼体机动运动中弯曲、回摆和滑行阶段代表性动作与其二值化效果

    Figure  3.  Typical images and their binarization identification of the fish body and fins during bending, swinging back and coasting motions

    图  4  形态学数据提取步骤

    Figure  4.  Flowchart of digital image processing for zebrafish swimming

    图  5  基于标准模型的鱼鳍识别与修正

    Figure  5.  Fins recognition and correction

    图  6  尾鳍的位置识别与长度确定

    Figure  6.  Determination of position and length of caudal fin

    图  7  鱼体的三维重构示意图(左)及惯性系与质心系间关系(右)

    Figure  7.  Sketch map of fish 3D reconstruction model Relationship between inertial system and centroid system in maneuvering motion

    图  8  S−G滤波对运动学数据捕获的优化效果

    Figure  8.  Effect of S−G filtering on kinematics data acquisition

    图  9  一次C型起动中鱼体各运动学数据随时间的变化

    Figure  9.  Kinematics vary over time in a fish C-start motion

    图  10  鱼体 C 型机动运动中机械能及其分量随时间的变化

    Figure  10.  Variation of mechanical energy and its components with time in zebrafish C-shaped maneuvering

    图  11  斑马鱼C型机动运动统计规律分析

    Figure  11.  Statistical analysis of zebrafish C-shaped maneuvering

    图  12  C型机动过程中运动学数据的相关性

    Figure  12.  The relationship between kinematic parameters

    表  1  标准算例参数设置与运动学数据相对误差

    Table  1.   Parameter setting of standard example and kinematic data error

    运动模式分辨率/(像素×像素)运动模型参数$E_{{\rm{R}},X} $$E_{ {\rm{R} },{u_C} }$$E_{{\rm{R}},a_C} $$E_{ {\rm{R} },{w_C} }$$E_{ {\rm{R} },{\beta_C} }$
    匀速直线 1080×800 $\bar u_C(t)=1\;{\rm{m} }/{\rm{s} }$ 0.18% 0.20%
    匀速直线 2160×1600 $\bar u_C(t)=1\;{\rm{m} }/{\rm{s} }$ 0.09% 0.10%
    匀加速直线 1080×800 $u_C(t)=10 t\;{\rm{m} }/{\rm{s} }$ 0.19% 0.26% 1.10%
    匀速圆周 1080×800 $\omega_C(t)=4\pi\; {\rm{rad} }/{\rm{s} }$ 0.41% 1.80% 2.96% 1.20%
    匀速圆周 2160×1600 $\omega_C(t)=4\pi\; {\rm{rad} }/{\rm{s} }$ 0.21% 0.80% 1.54% 0.70%
    匀加速圆周 1080×800 $\omega_C(t)=40\pi t\; {\rm{rad} }/{\rm{s} }$ 0.40% 1.60% 2.80% 1.14% 2.10%
    波状摆动 1080×800 $y(s,t)=0.4\sin\left[2\pi\left(\dfrac{s}{4}-\dfrac{t}{0.5}\right)\right]\;{\rm{cm} }$ 0.15% 0.30% 1.27% 1.23% 3.07%
    波状摆动 2160×1600 $y(s,t)=0.4\sin\left[2\pi\left(\dfrac{s}{4}-\dfrac{t}{0.5}\right)\right]\;{\rm{cm} }$ 0.08% 0.21% 0.83% 0.70% 2.10%
    下载: 导出CSV
  • [1] WEIHS D. The mechanism of rapid starting of slender fish1[J]. Biorheology, 2017, 10(3): 343–350.
    [2] DOMENICI P, BLAKE R W, et al. The kinematics and performance of fish fast-start swimming[J]. Journal of Experimental Biology, 1997, 200(8): 1165–1165. doi: 10.1242/jeb.200.8.1165
    [3] DOMENICI P, BLAKE R W, et al. The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei)[J]. Journal of Experimental Biology, 1991, 156(1): 187–205. doi: 10.1242/jeb.156.1.187
    [4] KASAPI M A, DOMENICI P, BLAKE R W, et al. The kinematics and performance of escape responses of the knifefish Xenomystus nigri[J]. Canadian Journal of Zoology, 1993, 71(1): 189–195. doi: 10.1139/z93-026
    [5] LIU J, HU H. Mimicry of Sharp Turning Behaviors in a Robotic Fish[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 2005.
    [6] GRAY J. Directional Control of Fish Movement[J]. Proceedings of the Royal Society of London, 1933, 113(781): 115–125.
    [7] WEIHS D. The mechanism of rapid starting of slender fish[J]. Biorheology, 1973, 10(3): 343–350. doi: 10.3233/BIR-1973-10308
    [8] BASU S, DAVIDSON I, WAGSTAFF K. Constrained clustering: advances in algorithms, theory, and applications[M]. Florida: CRC Press, 2008.
    [9] BANG P I, YELICK P C, MALICKI J J, et al. High-throughput behavioral screening method for detecting auditory response defects in zebrafish[J]. Journal of Neuroscience Methods, 2002, 118(2): 177–187. doi: 10.1016/S0165-0270(02)00118-8
    [10] TYTELL E D, LAUDER G V. The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2[J]. Journal of Experimental Biology, 2002, 205(Pt 17): 2591-2603.
    [11] MCHENRY M J. Mechanisms of helical swimming: asymmetries in the morphology, movement and mechanics of larvae of the ascidian Distaplia occidentalis[J]. Journal of Experimental Biology, 2001, 204(Pt 17): 2959.
    [12] WEI G, COSMAN P, BERRY, et al. Automatic tracking, feature extraction and classification of C elegans phenotypes[J]. Biomedical Engineering IEEE Transactions on, 2004, 51(10): 1811–1820. doi: 10.1109/TBME.2004.831532
    [13] CRONIN C J, MENDEL J E, MUKHTAR S, et al. An automated system of measuring parameters of nematode sinusoidal movement[J]. BMC Genetics, 2005, 6(1): 5. doi: 10.1186/1471-2156-6-5
    [14] FONTAINE E, LENTINK D, KRANENBARG S, et al. Automated visual tracking for studying the ontogeny of zebrafish swimming[J]. Journal of Experimental Biology, 2008, 211(8): 1305. doi: 10.1242/jeb.010272
    [15] GUO Y, XIONG Z, VERBEEK F J. An efficient and robust hybrid method for segmentation of zebrafish objects from bright-field microscope images[J]. Machine Vision and Applications, 2018, 29(8): 1211–1225. doi: 10.1007/s00138-018-0934-y
    [16] LIU G, GENG B, ZHENG X, et al. An image-guided computational approach to inversely determine in vivo material properties and model flow-structure interactions of fish fins[J]. Journal of Computational Physics, 2019, 392: 578–593. doi: 10.1016/j.jcp.2019.04.062
    [17] 张冰冰, 余永亮. 斑马鱼C型起动中动力学特性的活体实验研究[J]. 实验力学, 2014, 29(6): 10.
    [18] 施特格. 机器视觉算法与应用[M]. 北京: 清华大学出版社, 2008.
    [19] GONZALEZ R C, WOODS R E. Digital image processing[J]. Prentice Hall International, 2008, 28(4): 484–486.
    [20] 郭春钊, 汪增福. 基于序列图像的鱼游运动机理分析[J]. 实验力学, 2005, 20(04): 525–531. doi: 10.3969/j.issn.1001-4888.2005.04.006
    [21] BORAZJANI I, SOTIROPOULOS F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J]. Journal of Experimental Biology, 2008, 211(Pt 10): 1541–1558.
    [22] DONG H, BOZKURTTAS M, MITTAL R, et al. Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin[J]. Journal of Fluid Mechanics, 2010, 645: 345–373. doi: 10.1017/S0022112009992941
    [23] DANOS N, LAUDER G V. The ontogeny of fin function during routine turns in zebrafish Danio rerio[J]. Journal of Experimental Biology, 2007, 210(19): 3374. doi: 10.1242/jeb.007484
    [24] WEIS-FOGH T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973, 59(1): 169–230. doi: 10.1242/jeb.59.1.169
    [25] YANG Y, WU G H, YU Y L, et al. Two-dimensional self-propelled fish motion in medium: an integrated method for deforming body dynamics and unsteady fluid dynamics[J]. Chinese Physics Letters, 2008, 25(2): 4.
    [26] FOREMAN M B, EATON R C. The direction change concept for reticulospinal control of goldfish escape[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 1993, 13(10): 4101–13. doi: 10.1523/JNEUROSCI.13-10-04101.1993
    [27] WANG Z W, YU Y L, TONG B G. An energetics analysis of fish self-propelled swimming[J]. Science China, 2018, 61(7): 4.
    [28] WANG Z W, YU Y L. Energetics comparison between zebrafish C-shaped turning and escape: self-propelled simulation with novel curvature models[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4): 467–480.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  140
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-01-28
  • 录用日期:  2022-02-28
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日