Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel
-
摘要: 液滴微流控是微流控领域重要分支,其所涉及的生物流体往往具有非牛顿性质。为深入理解非牛顿性质对液滴生成的影响,配置4种不同流变特性的流体,系统研究流动聚焦微通道中滴流模式下的非牛顿液滴生成。结果表明:与牛顿液滴相比,非牛顿液滴生成表现出更显著的“连珠现象”;不同非牛顿性质对液滴生成的影响截然不同,剪切稀化和弹性效应对液滴尺寸和生成频率的作用相反。液柱颈缩动力学结果显示:单一的剪切稀化效应使得非牛顿液滴液柱颈缩过程与牛顿液滴相似,均只有流动驱动阶段;单一的弹性效应则使得非牛顿液滴液柱颈缩后期出现不同于牛顿流体的毛细驱动阶段;而剪切稀化和弹性效应的共同作用会导致液柱颈缩过程中更显著的毛细驱动阶段和液柱断裂后更显著的“连珠现象”。Abstract: Droplet microfluidic is an important branch of the microfluidic field and the biological fluids involved in it often have non-Newtonian properties. In order to understand the influence of non-Newtonian properties on droplet formation, four kinds of fluids with different rheological properties were configured to systematically study the non-Newtonian droplet formation in the dripping mode in a flow focusing microchannel. The results show that compared with Newtonian droplet formation, non-Newtonian droplet formation shows a more significant “beads-on-a-string” phenomenon. Different non-Newtonian properties have different effects on droplet formation. Shear thinning effect and elastic effect have opposite effects on the droplet size and formation frequency. The results of liquid column necking dynamics show that the process of liquid column necking is similar to that of Newtonian fluid due to a single shear thinning effect. The single elastic effect makes the capillary drive stage which appears of liquid column necking different from that of Newtonian fluid. The combined effect of the elastic effect and shear thinning effect leads to more significant capillary drive stage in the process of column necking and more significant “beads-on-a-string” after column necking.
-
表 1 Carreau-Yasuda模型和改进Carreau模型的拟合系数
Table 1. The fitting parameters of the Carreau-Yasuda model and modified Carreau model
流体 ${\eta _0 }/({\rm{Pa} } \cdot {\rm{s} } )$ ${\eta _\infty }/({\rm{Pa} } \cdot {\rm{s} })$ ${\lambda _{\rm{C}}}/{\rm{ms}}$ a n XG 0.0187 0.00182 0.27 2 0.03 PEO 0.0106 0.00462 0.02 1.1 0.22 表 2 不同溶液与橄榄油之间的界面张力
Table 2. Interfacial tension between different solutions and olive oil
流体 密度ρ/(g·cm−3) 界面张力$ \sigma $/(mN·m−1) GW 1.158 20.49±0.16 PVP 1.020 18.22±0.17 XG 1.001 21.54±0.28 PEO 1.004 18.22±0.23 表 3 不同离散相液滴的拟合系数
Table 3. Fitting coefficients of droplets of different dispersed phases
拟合系数 液滴 GW PVP XG PEO A 1.21±0.02 1.01±0.09 1.48±0.08 1.19±0.04 B −0.05±0.01 −0.04±0.01 −0.07±0.01 −0.05±0.01 C 1.10×10−3 7.00×10−4 1.37×10−3 1.20×10−3 D 0.44±0.01 0.63±0.19 0.2±0.09 0.55±0.03 E 0.11±0.01 0.14±0.01 0.08±0.01 0.06±0.01 -
[1] KAMINSKI T S, SCHELER O, GARSTECKI P. Droplet microfluidics for microbiology: techniques, applications and challenges[J]. Lab on a Chip, 2016, 16(12): 2168–2187. doi: 10.1039/c6lc00367b [2] MAJUMDER S, WUBSHET N, LIU A P. Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells[J]. Journal of Micromechanics and Microengineering, 2019, 29(8): 083001. doi: 10.1088/1361-6439/ab2377 [3] DING Y, HOWES P D, DEMELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132–149. doi: 10.1021/acs.analchem.9b05047 [4] VECCHIOLLA D, GIRI V, BISWAL S L. Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation[J]. Soft Matter, 2018, 14(46): 9312–9325. doi: 10.1039/c8sm01285g [5] YUAN D, ZHAO Q B, YAN S, et al. Recent progress of particle migration in viscoelastic fluids[J]. Lab on a Chip, 2018, 18(4): 551–567. doi: 10.1039/c7lc01076a [6] LIU Z M, YANG Y, DU Y, et al. Advances in droplet-based microfluidic technology and its applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 282–296. doi: 10.1016/S1872-2040(17)60994-0 [7] ZHU P G, WANG L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34–75. doi: 10.1039/c6lc01018k [8] VLADISAVLJEVIĆ G T, KOBAYASHI I, NAKAJIMA M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices[J]. Microfluidics and Nanofluidics, 2012, 13(1): 151–178. doi: 10.1007/s10404-012-0948-0 [9] MAZUTIS L, BARET J C, GRIFFITHS A D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion[J]. Lab on a Chip, 2009, 9(18): 2665–2672. doi: 10.1039/b903608c [10] DENG X K, REN Y K, HOU L K, et al. Compound-droplet-pairs-filled hydrogel microfiber for electric-field-induced selective release[J]. Small, 2019, 15(42): 1903098. doi: 10.1002/smll.201903098 [11] 李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012.LI Z H, WU J K, HU G Q. Fluid flow in microfluidic chips[M]. Beijing: Science Press, 2012. [12] 陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 55–110.CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45(1): 55–110. [13] ROSTAMI B, MORINI G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191–200. doi: 10.1016/j.expthermflusci.2019.01.008 [14] ROSTAMI B, MORINI G L. Micro droplets of non-Newtonian solutions in silicone oil flow through a hydrophobic micro cross-junction[J]. Journal of Physics: Conference Series, 2017, 923: 012021. doi: 10.1088/1742-6596/923/1/012021 [15] FU T T, MA Y G, LI H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75–86. doi: 10.1016/j.ces.2015.12.031 [16] 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867–876. doi: 10.6052/0459-1879-16-063LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867–876. doi: 10.6052/0459-1879-16-063 [17] MOON S K, CHEONG I W, CHOI S W. Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 454: 84–88. doi: 10.1016/j.colsurfa.2014.04.006 [18] TAN Y C, CRISTINI V, LEE A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 350–356. doi: 10.1016/j.snb.2005.06.008 [19] JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Science, 2005, 309(5736): 887–888. doi: 10.1126/science.1112615 [20] FATEHIFAR M, REVELL A, JABBARI M. Non-Newtonian droplet generation in a cross-junction microfluidic channel[J]. Polymers, 2021, 13(12): 1915. doi: 10.3390/polym13121915 [21] DU W, FU T T, DUAN Y F, et al. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2018, 176: 66–76. doi: 10.1016/j.ces.2017.10.019 [22] HARVIE D J E, DAVIDSON M R, COOPER-WHITE J J, et al. A parametric study of droplet deformation through a microfluidic contraction: shear thinning liquids[J]. International Journal of Multiphase Flow, 2007, 33(5): 545–556. doi: 10.1016/j.ijmultiphaseflow.2006.12.002 [23] DU W, FU T T, ZHANG Q D, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196–5206. doi: 10.1002/aic.15834 [24] ARRATIA P E, GOLLUB J P, DURIAN D J. Polymeric filament thinning and breakup in microchannels[J]. Physical Review E, 2008, 77(3): 036309. doi: 10.1103/physreve.77.036309 [25] DERZSI L, KASPRZYK M, PLOG J P, et al. Flow focusing with viscoelastic liquids[J]. Physics of Fluids, 2013, 25(9): 092001. doi: 10.1063/1.4817995 [26] REN Y, LIU Z, SHUM H C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem[J]. Lab on a Chip, 2015, 15(1): 121–134. doi: 10.1039/c4lc00798k [27] KIM D Y, SHIM T S, KIM J M. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel[J]. Korea-Australia Rheology Journal, 2017, 29(2): 147–153. doi: 10.1007/s13367-017-0016-0 [28] SHI Y, TANG G H. Lattice boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17(4): 1056–1072. doi: 10.4208/cicp.2014.m333 [29] XUE C D, SUN Z P, LI Y J, et al. Non-Newtonian droplet generation in a flow-focusing microchannel[C]//Proceedings of ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer, Dalian, China. 2019. doi: 10.1115/MNHMT2019-4196 [30] YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica Acta, 1981, 20(2): 163–178. doi: [31] LI D, XUAN X C. Fluid rheological effects on particle migration in a straight rectangular microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(4): 1–10. doi: 10.1007/s10404-018-2070-4 [32] BHAT P P, APPATHURAI S, HARRIS M T, et al. Formation of beads-on-a-string structures during break-up of viscoelastic filaments[J]. Nature Physics, 2010, 6(8): 625–631. doi: 10.1038/nphys1682 [33] OLIVEIRA M S N, MCKINLEY G H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[J]. Physics of Fluids, 2005, 17(7): 071704. doi: 10.1063/1.1949197 [34] ZHOU C F, YUE P T, FENG J J. Formation of simple and compound drops in microfluidic devices[J]. Physics of Fluids, 2006, 18(9): 092105. doi: 10.1063/1.2353116 [35] XUE C D, CHEN X D, LI Y J, et al. Breakup dynamics of semi-dilute polymer solutions in a microfluidic flow-focusing device[J]. Micromachines, 2020, 11(4): 406. doi: 10.3390/mi11040406 [36] ROUMPEA E, CHINAUD M, ANGELI P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels[J]. AIChE Journal, 2017, 63(8): 3599–3609. doi: 10.1002/aic.15704 [37] HONG J S, COOPER-WHITE J. Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channe[J]. Korea-Australia Rheology Journal, 2009, 21(4): 269–280. -