留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸气式飞行器连续变马赫数风洞试验技术

周健 张江 陈强 魏巍 刘磊 钱丹丹

周健, 张江, 陈强, 等. 吸气式飞行器连续变马赫数风洞试验技术[J]. 实验流体力学, 2023, 37(6): 76-85 doi: 10.11729/syltlx20210189
引用本文: 周健, 张江, 陈强, 等. 吸气式飞行器连续变马赫数风洞试验技术[J]. 实验流体力学, 2023, 37(6): 76-85 doi: 10.11729/syltlx20210189
ZHOU J, ZHANG J, CHEN Q, et al. Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 76-85 doi: 10.11729/syltlx20210189
Citation: ZHOU J, ZHANG J, CHEN Q, et al. Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 76-85 doi: 10.11729/syltlx20210189

吸气式飞行器连续变马赫数风洞试验技术

doi: 10.11729/syltlx20210189
详细信息
    作者简介:

    周健:(1988—),男,河北沧州人,硕士研究生,高级工程师。研究方向:试验流体力学。通信地址:北京市丰台区云岗西路17号7201信箱12分箱(100074)。E-mail:buaazhouj@163.com

    通讯作者:

    E-mail:13611319903@163.com

  • 中图分类号: V231.3

Wind tunnel test technique of continuous varying Mach number for air-breathing vehicle

  • 摘要: 为研究吸气式飞行器加/减速引起的进气道起动/再起动现象,以及该过程导致的飞行器整体气动性能突变问题,基于二维楔面激波机理,在1.2 m量级风洞中开展了超声速连续变马赫数试验技术研究,通过研制激波发生与控制系统,实现了一次风洞试验过程中马赫数连续可调。该技术方案具有马赫数调节简单、响应快,马赫数控制可靠、精度高等特点。流场校测表明,瞬时变马赫数区域流场品质满足国军标要求,可开展基于马赫数连续变化的测力测压等风洞试验。在进气道动态特性验证试验中,成功捕获了连续减速状态下进气道由起动到不起动的动态过程,临界状态特性与仿真结果一致性较高。
  • 图  1  连续变马赫数原理图

    Figure  1.  Diagram of continuous varying Mach number

    图  2  波后马赫数随δ变化曲线

    Figure  2.  Curve of Mach number after shock wave with δ

    图  3  FD–12风洞照片

    Figure  3.  Picture of FD–12 wind tunnel

    图  4  连续变马赫数试验段内芯

    Figure  4.  Inner core of continuous varying Mach number test section

    图  5  喷管出口速度型

    Figure  5.  Velocity profiles at nozzle outlet

    图  6  上洞壁扩开角对流场的影响

    Figure  6.  Influence of expansion angle upper wall on flow field

    图  7  波后变马赫数流场气流偏斜角

    Figure  7.  Flow deflection angle of variable Mach number flow field behind shock wave

    图  8  激波板支持机构系统

    Figure  8.  Shock wave plate support mechanism system

    图  9  连续变马赫数试验流程

    Figure  9.  Test process of continuous varying Mach number

    图  10  测压耙安装图

    Figure  10.  Installation of piezometric rakes

    图  11  各激波板折角下马赫数分布云图

    Figure  11.  Cloud of Mach number on angles of δ

    图  12  变马赫数流场均匀区对比图

    Figure  12.  Comparison of actual and theoretical uniform flow field

    图  13  速度场校测结果

    Figure  13.  Calibration results of velocity flow-field

    图  14  AGARD–B标准模型

    Figure  14.  AGARD–B standard model

    图  15  方向场校测结果

    Figure  15.  Calibration results of directions flow-field

    图  16  进气道喉道压力脉动特性

    Figure  16.  Characteristics of dynamic pressure at inlet throat

    图  17  不同马赫数变化速率下内流道压力脉动特性

    Figure  17.  Characteristics of dynamic pressure with different rates of varying Mach number at internal flowpath

    图  18  进气道入口纹影图

    Figure  18.  Schlieren results of inlet

    图  19  进气道不起动导致的气动特性迟滞现象

    Figure  19.  Hysteresis of aerodynamic characteristics by inlet unstart

  • [1] WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[R]. AIAA-2008-2580, 2008.
    [2] VOLAND R, AUSLENDER A, SMART M, et al. CIAM/NASA Mach 6.5 scramjet flight and ground test[C]//Proc of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. 1999. doi: 10.2514/6.1999-4848
    [3] AGRAWAL R K, YUNIS M. A generalized mathematical model to estimate gas turbine starting characteristics[C]//Proceedings of ASME 1981 International Gas Turbine Conference and Products Show. 2015. doi: 10.1115/81-GT-202
    [4] 赵丽凤, 王逊, 刘小兵, 等. 涡轮–冲压组合发动机模态过渡段性能模拟和概念探讨[J]. 工程热物理学报, 1999, 20(1): 9–12. doi: 10.3321/j.issn:0253-231X.1999.01.003

    ZHAO L F, WANG X, LIU X B, et al. Performance simulation and conceptual investigation of turbo ramjet engine in transition period[J]. Journal of Engineering Thermophysics, 1999, 20(1): 9–12. doi: 10.3321/j.issn:0253-231X.1999.01.003
    [5] WIETING A R. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine[R]. NASA TND-8156, 1976.
    [6] SHIMURA T, MITANI T, SAKURANAKA N, et al. Load oscillations caused by unstart of hypersonic wind tunnels and engines[J]. Journal of Propulsion and Power, 1998, 14(3): 348–353. doi: 10.2514/2.5287
    [7] 钟萍, 陈丽艳, 王颖. 国外高超声速技术焦点领域及相关设备改造综述[J]. 飞航导弹, 2011(10): 17–22. doi: 10.16338/j.issn.1009-1319.2011.10.013
    [8] KITAMURA E, MITANI T, SAKURANAKA N, et al. Variable nozzles for aerodynamic testing of scramjet engines[C]//Proc of the ICIASF 2005 Record International Congress on Instrumentation in Aerospace Simulation Facilities. 2005: 348-354. doi: 10.1109/ICIASF.2005.1569943
    [9] TICHENOR N, SEMPER M, BOWERSOX R, et al. Cali-bration of an actively controlled expansion hypersonic wind tunnel[C]//Proc of the 27th AIAA Aerodynamic Measure-ment Technology and Ground Testing Conference. 2010. doi: 10.2514/6.2010-4793
    [10] GARRARD D, SEELY J, ABEL L. An analysis of alterna-tives to provide a varying Mach number test capability at APTU[C]//Proc of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. 2006. doi: 10.2514/6.2006-8044
    [11] 钟萍. 国外高超声速飞行加速地面模拟能力研究进展[J]. 飞航导弹, 2014(6): 10–15.
    [12] ERDMANN S F. A new economic flexible nozzle for superso-nic wind tunnels[J]. Journal of Aircraft, 1971, 8(1): 58–60. doi: 10.2514/3.44228
    [13] MACDERMOTT W N. The correction of flexible plate supersonic nozzle contours by influence methods[J]. Journal of the Aeronautical Sciences, 1955, 22(5): 289–296. doi: 10.2514/8.3337
    [14] MONTGOMERY P, GARRARD D. Test and evaluation of hypersonic aeropropulsion systems along flight trajectories in a time-varying flight environment[C]//Proc of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005. doi: 10.2514/6.2005-3900
    [15] 彭强, 邓小刚, 廖达雄, 等. 半柔壁喷管气动设计关键控制参数研究[J]. 空气动力学学报, 2011, 29(1): 39–46, 84. doi: 10.3969/j.issn.0258-1825.2011.01.007

    PENG Q, DENG X G, LIAO D X, et al. The primary parameters research on the aerodynamic designing of semi-flexible nozzle[J]. Acta Aerodynamica Sinica, 2011, 29(1): 39–46, 84. doi: 10.3969/j.issn.0258-1825.2011.01.007
    [16] 熊波, 林学东, 杨洋, 等. 挠性壁喷管撑杆单位影响曲线相关性研究及其在2 m × 2 m超声速风洞中的应用[J]. 实验流体力学, 2013, 27(4): 88–91. doi: 10.3969/j.issn.1672-9897.2013.04.016

    XIONG B, LIN X D, YANG Y, et al. Jack's unit influence curve association study of the flexible plate nozzle and application in 2 m × 2 m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 88–91. doi: 10.3969/j.issn.1672-9897.2013.04.016
    [17] 范志鹏, 徐惊雷, 吕郑, 等. 型面旋转变马赫数风洞喷管的优化设计[J]. 航空学报, 2014, 35(5): 1216–1225.

    FAN Z P, XU J L, LYU Z, et al. Optimization design of variable Mach number wind tunnel nozzle by rotating profile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1216–1225.
    [18] 齐伟呈, 徐惊雷, 范志鹏, 等. 马赫数2~4连续可调风洞数值模拟及静态标定试验[J]. 航空学报, 2017, 38(1): 120155.

    QI W C, XU J L, FAN Z P, et al. Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120155.
    [19] 谢文忠, 葛严, 赵昊, 等. 一种高超声速进气道加速自起动的实验方法[J]. 航空动力学报, 2018, 33(6): 1475–1483.

    XIE W Z, GE Y, ZHAO H, et al. A test method for accelerating self-start of hypersonic inlets[J]. Journal of Aerospace Power, 2018, 33(6): 1475–1483.
    [20] 赵昊, 谢旅荣, 郭荣伟, 等. 超声速进气道加速/减速过程起动/不起动现象研究[J]. 航空动力学报, 2015, 30(8): 1841–1852. doi: 10.13224/j.cnki.jasp.2015.08.007

    ZHAO H, XIE L R, GUO R W, et al. Study of start/unstart phenomenon of supersonic inlet in acceleration/deceleration process[J]. Journal of Aerospace Power, 2015, 30(8): 1841–1852. doi: 10.13224/j.cnki.jasp.2015.08.007
    [21] 刘雄, 王翼, 梁剑寒. 二维高超声速进气道加速启动过程数值研究[J]. 推进技术, 2015, 36(3): 328–335.

    LIU X, WANG Y, LIANG J H. Numerical research on accelerating start process of 2-dimensional hypersonic inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 328–335.
    [22] 李祝飞, 高文智, 杨基明. 一种二元进气道起动特性的数值与实验考察[J]. 推进技术, 2016, 37(7): 1224–1232.

    LI Z F, GAO W Z, YANG J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7): 1224–1232.
    [23] WANG W X, GUO R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563–571. doi: 10.1016/j.cja.2013.04.018
    [24] 张江, 董金刚, 蔡琛芳, 等. 冲压发动机进气道起动迟滞特性试验装置: 中国, CN104132811B[P]. 2016-08-24.

    ZHANG J, DONG J, CAI C, et al. Ramjet air inlet starting hysteresis characteristics test device: China CN104132811B[P]. 2016-08-24.
    [25] SHEN J M, DONG J G, LI R Q, et al. Integrated supersonic wind tunnel nozzle[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2422–2432. doi: 10.1016/j.cja.2019.07.005
    [26] 中国人民解放军总装备部. 低速风洞和高速风洞流场品质要求: GJB 1179A–2012[S]. 北京: 总装备部军标出版发行部, 2012.
  • 加载中
图(19)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  113
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-01-17
  • 录用日期:  2022-01-20
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日