Wind tunnel force test of fairing separation in hypersonic and high dynamic pressure situation
-
摘要: 针对高超声速试验模型整体式整流罩的反推火箭拔罩分离问题,开展了反推火箭喷流模拟方法和风洞测力试验装置设计研究,试验模拟了马赫数5、动压33 kPa时整流罩反推喷流干扰效应和分离距离影响,获得了反推喷流和分离距离影响下的整流罩气动特性。试验研究表明:反推火箭拔罩分离过程中,喷流干扰作用主导了整流罩的气动特性,使得法向力系数、轴向力系数和俯仰力矩系数出现了最大分别为44.5%、32.4%和198.6%的变化量;在负迎角下,整流罩压心前移显著,使得静稳定设计的整流罩呈现出静不稳定性,不利于整流罩安全分离;分离距离越大,分离距离变化对整流罩气动特性的影响越弱;将分离初始迎角限定为小的正迎角,整流罩在分离过程中容易保持姿态稳定,有利于整流罩安全分离。Abstract: For the problem of the monolithic fairing separating from a hypersonic test demonstrator in a high dynamic situation, the reverse-thrust jets simulation method and wind tunnel force test model design have been developed, to meet the requirements of simulating the jets interaction effect and separation distance influence in the hypersonic wind tunnel. The fairing’s aerodynamic characteristics, including the jets interaction effect and the separation distance influence, were obtained by the strain balance in circumstances where the Mach number of the free-stream was 5 and the dynamic pressure was 33 kPa. The study indicates that the jets interaction effect dominates fairing’s aerodynamic characteristics in the separation process. The maximum coefficients’ variation of the normal force, axial force and pitching moment are 44.5%, 32.4% and 198.6% respectively. The pressure center moves forward obviously, making the fairing with designed static stability presents un-stability features in the minus attack angles. The influence of the separation distance on fairing’s aerodynamic characteristics becomes weaker as the separation distance increases. Using a small positive angle as the initial separation attack angle is helpful for the fairing maintaining a stable attitude, benefitting separation security during the separation process.
-
Key words:
- fairing separation /
- reverse-thrust jets /
- balance force test /
- high dynamic pressure /
- hypersonic.
-
表 1 天平主要技术参数
Table 1. Main parameters of balance
天平分量 设计载荷 精度/(% FS) 准度/(% FS) 轴向力A 150 N 0.2 0.4 法向力N 500 N 0.2 0.4 侧向力Z 100 N 0.2 0.4 俯仰力矩Mz 20 N·m 0.2 0.4 偏航力矩My 4 N·m 0.2 0.4 滚转力矩Mx 1 N·m 0.2 0.4 表 2 冷喷流模拟参数
Table 2. Parameters of Cooling jets
pj /p∞ pj /kPa Mj p0j /MPa γ 286 541.3 1.982 4.12 1.4 表 3 试验结果与数值计算结果对比
Table 3. Comparison between test result and CFD data
迎角 数值计算结果 风洞试验结果 计算与试验的相对偏差 CN CA CMz CN CA CMz ΔCN ΔCA ΔCMz α=0° –0.000012 0.100925 0 0.00056 0.10657 –0.00006 0.59% 2.69% –4.08% α=3° 0.056205 0.102275 –0.000217 0.05275 0.10737 –0.00016 –3.58% 2.43% 3.88% α=9°(基准) – – – 0.09639 0.20973 0.00147 – – – 注:基准为α=9°、无喷流工况下气动载荷系数试验值的绝对值。 -
[1] 刘竹生, 王小军, 王国辉, 等. 航天分离设计[M]. 北京: 中国宇航出版社, 2017: 26-28. [2] WALKER S H, RODGERS F C, ESPOSITA A L. The hypersonic collaborative Australia/United States experiment(HyCAUSE)[C]//Proc of the 13th International Space Planes and Hypersonics Systems and Technologies Conference. 2005: 3254. doi: 10.2514/6.2005-3254 [3] BRASE L O Jr, HAUDRICH D P. Flutter and divergence assessment of the HyFly missile[C]//Proc of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2009: 2462. doi: 10.2514/6.2009-2462 [4] 朱学昌,李浩远,喻天翔,等. 低空高速飞行器整流罩分离技术研究现状和展望[J]. 固体火箭技术,2014,37(1):12-17. doi: 10.7673/j.issn.1006-2793.2014.01.003ZHU X C,LI H Y,YU T X,et al. Research status and prospects for low-altitude and high-speed fairing separation technique[J]. Journal of Solid Rocket Technology,2014,37(1):12-17. doi: 10.7673/j.issn.1006-2793.2014.01.003 [5] 李哲,范学领,孙秦,等. 大型整流罩分离动力学简化建模及仿真分析[J]. 固体火箭技术,2012,35(5):583-587.LI Z,FAN X L,SUN Q,et al. Simplified finite element modeling method and separation dynamics of large scale fairing structure[J]. Journal of Solid Rocket Technology,2012,35(5):583-587. [6] 张刚,刘陆广,赵卓茂,等. 气动载荷对整流罩分离特性影响的仿真计算研究[J]. 航天器环境工程,2017,34(3):235-240. doi: 10.3969/j.issn.1673-1379.2017.03.002ZHANG G,LIU L G,ZHAO Z M,et al. Simulation of the influence of aerodynamic load on fairing separation[J]. Spacecraft Environment Engineering,2017,34(3):235-240. doi: 10.3969/j.issn.1673-1379.2017.03.002 [7] 刘宇轩. 导弹整流罩轴向分离仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.LIU Y X. Simulation study on axial separation of missile fairing[D]. Harbin: Harbin Institute of Technology, 2017. [8] 刘君,王巍,郭正,等. 稠密大气层内火箭头罩动态分离过程数值模拟[J]. 弹道学报,2006,18(3):34-38. doi: 10.3969/j.issn.1004-499X.2006.03.009LIU J,WANG W,GUO Z,et al. Numerical simulation of the detaching process for rocket mantles in low altitude[J]. Journal of Ballistics,2006,18(3):34-38. doi: 10.3969/j.issn.1004-499X.2006.03.009 [9] 王巍,刘君,白晓征,等. 非结构动网格技术及其在超声速飞行器头罩分离模拟中的应用[J]. 空气动力学学报,2008,26(1):131-135. doi: 10.3969/j.issn.0258-1825.2008.01.025WANG W,LIU J,BAI X Z,et al. DUM research and apply to solve the fairing separating form hypersonic vehicle[J]. Acta Aerodynamica Sinica,2008,26(1):131-135. doi: 10.3969/j.issn.0258-1825.2008.01.025 [10] 赵晓慧. 巡航导弹锥形头罩分离仿真分析[D]. 长沙: 国防科学技术大学, 2009.ZHAO X H. Design and simulation for the separation of a taper nose cap from a cruise missile[D]. Changsha: National University of Defense Technology, 2009. [11] 徐敏,刘振. 基于多块嵌套结构动网格的拦截弹防热保护罩的二维分离模拟[J]. 计算力学学报,2007,24(3):375-378. doi: 10.3969/j.issn.1007-4708.2007.03.023XU M,LIU Z. Two-dimensional simulations about the separation of the interceptor missile shroud covers based on moving multi-block chimera structure grids[J]. Chinese Journal of Computational Mechanics,2007,24(3):375-378. doi: 10.3969/j.issn.1007-4708.2007.03.023 [12] 蒋增辉,宋威,鲁伟,等. 高速风洞投放模型试验技术的关键问题及应用领域[J]. 空气动力学学报,2016,34(6):744-749,802. doi: 10.7638/kqdlxxb-2015.0195JIANG Z H,SONG W,LU W,et al. Critical problems and applied fields of drop-model testing technique in high speed wind tunnel[J]. Acta Aerodynamica Sinica,2016,34(6):744-749,802. doi: 10.7638/kqdlxxb-2015.0195 [13] HOLDEN M S, HARVEY J, MacLEAN M, et al. Development and application of a new ground test capability to conduct full-scale shroud and stage separation studies at duplicated flight conditions[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 696. doi: 10.2514/6.2005-696 [14] HOLDEN M S, WADHAMS T P, SMOLINSKI G J, et al. Experimental and numerical studies on hypersonic vehicle performance in LENS shock and expansion tunnels[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 125. doi: 10.2514/6.2006-125 [15] RESCH L R, HEDLUND E R, DECESARIS C A. Hypersonic shroud separation testing at the Naval Surface Warfare Center Hypervelocity Wind Tunnel 9[C]//Proc of the Annual Interceptor Technology Conference, Huntsville, AL. Reston, Virginia: AIAA, 1992: 2757. doi: 10.2514/6.1992-2757 [16] CHAMBERLAIN R R, BALTAR J Y. Time-accurate calculation of hypersonic shroud separation[C]//Proc of the 31st Aerospace Sciences Meeting. 1993: 317. doi: 10.2514/6.1993-317 [17] 宋威,鲁伟,蒋增辉. 超声速飞行器头罩分离风洞投放模型试验[J]. 实验流体力学,2017,31(6):45-50,70. doi: 10.11729/syltlx20170026SONG W,LU W,JIANG Z H. Wind tunnel drop model test of nose cap separation of supersonic vehicle[J]. Journal of Experiments in Fluid Mechanics,2017,31(6):45-50,70. doi: 10.11729/syltlx20170026 [18] 蒋增辉,宋威,陈农,等. 高超声速风洞子母弹大迎角抛壳投放试验[J]. 实验流体力学,2016,30(5):42-48. doi: 10.11729/syltlx20160020JIANG Z H,SONG W,CHEN N,et al. Hypersonic wind tunnel drop-model test on cover ejection from cargo pro-jectile at large angle of attack[J]. Journal of Experiments in Fluid Mechanics,2016,30(5):42-48. doi: 10.11729/syltlx20160020 [19] 朱国祥,王磊,苑朝凯,等. 进气道整流罩全尺度动态分离试验研究[J]. 实验流体力学,2019,33(4):45-51. doi: 10.11729/syltlx20180176ZHU G X,WANG L,YUAN C K,et al. The experimental investigation on full-scale dynamic separation for an inlet shroud[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):45-51. doi: 10.11729/syltlx20180176 [20] 刘广,江玉刚,任智毅,等. 整体式整流罩高速分离流固耦合仿真[J]. 战术导弹技术,2018(3):30-37. doi: 10.16358/j.issn.1009-1300.2018.7.192LIU G,JIANG Y G,REN Z Y,et al. Fluid-structure coupling simulation of integrated fairing high-speed separation[J]. Tactical Missile Technology,2018(3):30-37. doi: 10.16358/j.issn.1009-1300.2018.7.192 [21] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010. [22] 徐筠,王志坚,徐翔. 高超声速侧向喷流干扰气动特性试验研究[J]. 实验流体力学,2005,19(4):20-24. doi: 10.3969/j.issn.1672-9897.2005.04.004XU Y,WANG Z J,XU X. Experiment research about lateral jet in hypersonic flow[J]. Journal of Experiments in Fluid Mechanics,2005,19(4):20-24. doi: 10.3969/j.issn.1672-9897.2005.04.004 [23] 王志坚,伍贻兆,徐翔,等. 侧向喷流单、双喷管气动特性研究[J]. 实验流体力学,2008,22(3):23-26. doi: 10.3969/j.issn.1672-9897.2008.03.005WANG Z J,WU Y Z,XU X,et al. Force interaction experiment investigation for lateral jets[J]. Journal of Experiments in Fluid Mechanics,2008,22(3):23-26. doi: 10.3969/j.issn.1672-9897.2008.03.005 [24] 王志坚,伍贻兆,林敬周. 某运载火箭级间分离喷流干扰风洞试验研究[J]. 实验流体力学,2009,23(2):15-19. doi: 10.3969/j.issn.1672-9897.2009.02.004WANG Z J,WU Y Z,LIN J Z. Wind tunnel test on effect of the jet flow interaction on stage separation of launch vehicle[J]. Journal of Experiments in Fluid Mechanics,2009,23(2):15-19. doi: 10.3969/j.issn.1672-9897.2009.02.004 [25] 杨彦广,刘君,唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报,2006,24(1):28-33. doi: 10.3969/j.issn.0258-1825.2006.01.006YANG Y G,LIU J,TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica,2006,24(1):28-33. doi: 10.3969/j.issn.0258-1825.2006.01.006 [26] 王志坚,伍贻兆,徐翔,等. 冷/热喷流对飞行器气动特性干扰实验研究[J]. 南京航空航天大学学报,2009,41(4):429-431. doi: 10.3969/j.issn.1005-2615.2009.04.002WANG Z J,WU Y Z,XU X,et al. Investigation of lateral jet interaction test for different media[J]. Journal of Nanjing University of Aeronautics & Astronautics,2009,41(4):429-431. doi: 10.3969/j.issn.1005-2615.2009.04.002 [27] 贾洪印,吴晓军,周乃春,等. 导弹侧向喷流干扰及多喷口耦合效应数值模拟[J]. 空气动力学学报,2017,35(6):837-840. doi: 10.7638/kqdlxxb-2015.0083JIA H Y,WU X J,ZHOU N C,et al. Numerical investigation on coupling effects of multiple spouts and lateral jet interaction over missile configuration[J]. Acta Aerodynamica Sinica,2017,35(6):837-840. doi: 10.7638/kqdlxxb-2015.0083 [28] 解福田,林敬周,钟俊,等. 高超声速带喷流级间分离试验中腹支撑干扰影响特性研究[J]. 实验流体力学,2015,29(6):16-20. doi: 10.11729/syltlx20150028XIE F T,LIN J Z,ZHONG J,et al. Investigation of support interaction in stage separation experiment with jet in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2015,29(6):16-20. doi: 10.11729/syltlx20150028 [29] 闫杰, 于云峰, 凡永华, 等. 吸气式高超声速飞行器控制技术[M]. 西安: 西北工业大学出版社, 2015: 174-175. -