Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure
-
摘要: 仿生学与减阻技术的结合,为减阻开辟了重要的研究方向,在航空航天领域有着潜在的发展与应用前景。为提升降低风阻效果,本文对复合微纳减风阻结构进行了研究,基于仿生学原理,采用CFD仿真以及激光微纳制造技术,建立了减阻结构组合模型,并在飞行器的大气传感器半球头体模型表面制造仿生鲨鱼皮复合微纳结构,即在仿生鲨鱼皮鳞片结构的基础上,通过激光干涉扫描二级微沟槽,以进一步提升减阻效果。采用仿真模拟与风洞实验相结合的方式,对减阻机理进行理论分析,完成了复合结构的微纳制造,减阻率最高可达10.3%。Abstract: The combination of bionics and drag reduction technology has opened up an important research direction in the field of drag reduction, and has made a significant breakthrough. For better implementation to reduce the wind resistance effect, this paper studies the composite micro-nano drag reduction structure, according to the principle of bionics, through CFD simulation combined with the laser micro-nano fabrication technology. A combined model of drag reduction structure wad established. The flight vehicle air sensor head surface with bionic sharkskin composite micro-nano structures was manufactured by laser interfernce scanning on the basis of the bionic sharkskin scale structures, to further improve the drag reduction performance. Through the parallel simulation and wind tunnel test, the drag reduction mechanism was theoretically analyzed, and the composite structures were manufactured with a drag reduction rate of up to 10.3%.
-
Key words:
- shark skin scales /
- drag reduction /
- bionic microstructures /
- CFD flow field simulation
-
表 1 实验模型参数
Table 1. Experimental model parameters
lc=ls h1=h2 Lx Ly Lz 400 µm 150 µm 350 mm 350 mm 260 mm 表 2 CFD仿真参数
Table 2. CFD simulation parameter
样品 风速/(km·h–1) 阻力/N C 减阻效率ΔC 光滑半球头体 150 1.499 0.413 - 覆盖鳞片半球头体 150 1.245 0.343 16.9% 光滑半球头体 160 1.731 0.419 - 覆盖鳞片半球头体 160 1.407 0.342 18.4% 表 3 风洞实验参数表
Table 3. Parameters of wind tunnel experiment
样品 风速/(km·h–1) 阻力/N C 减阻效率
ΔC光滑表面样件A 150 1.386 0.3823 - 非光滑表面样件B 150 1.266 0.3491 8.7% 非光滑表面样件C 150 1.243 0.3430 10.3% 光滑表面样件A 160 1.565 0.3804 - 非光滑表面样件B 160 1.442 0.3504 7.9% 非光滑表面样件C 160 1.407 0.3419 10.1% -
[1] DOMEL A G,SAADAT M,WEAVER J C,et al. Shark skin-inspired designs that improve aerodynamic performance[J]. Journal of the Royal Society, Interface,2018,15(139):20170828. doi: 10.1098/rsif.2017.0828 [2] 李黎明. ANSYS有限元分析实用教程[M]. 北京: 清华大学出版社, 2005. [3] WANG Y H,ZHANG Z B,XU J K,et al. One-step method using laser for large-scale preparation of bionic superhydro-phobic & drag-reducing fish-scale surface[J]. Surface and Coatings Technology,2021,409:126801. doi: 10.1016/j.surfcoat.2020.126801 [4] WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//AIAA 20th Aerospace Sciences Meeting, 1982. doi: 10.2514/6.1982-169 [5] SANDERS R H,RUSHALL B,TOUSSAINT H,et al. Bodysuit yourself: but first think about it[J]. Journal of Turbulence,2001,S/3(138):201-212. [6] 刘志华,董文才,夏飞. V型沟槽尖峰形状对减阻效果及流场特性影响的数值分析[J]. 水动力学研究与进展:A辑,2006,21(2):223-231. doi: 10.3969/j.issn.1000-4874.2006.02.011LIU Z H,DONG W C,XIA F. The effects of the tip shape of V-groove on drag reduction and flow field characteristics by numerical analysis[J]. Journal of Hydrodynamics:Series A,2006,21(2):223-231. doi: 10.3969/j.issn.1000-4874.2006.02.011 [7] 田丽梅,任露泉,刘庆平,等. 仿生非光滑旋成体表面减阻特性数值模拟[J]. 吉林大学学报(工学版),2006,36(6):908-913. doi: 10.3969/j.issn.1671-5497.2006.06.016TIAN L M,REN L Q,LIU Q P,et al. Numerical simulation on drag reduction characteristic around bodies of revolution with bionic non-smooth surface[J]. Journal of Jilin University(Engineering and Technology Edition),2006,36(6):908-913. doi: 10.3969/j.issn.1671-5497.2006.06.016 [8] DENG Z F,YANG Q,CHEN F,et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters,2015,40(9):1928-1931. doi: 10.1364/OL.40.001928 [9] 丛茜,封云,任露泉. 仿生非光滑沟槽形状对减阻效果的影响[J]. 水动力学研究与进展:A辑,2006,21(2):232-238. doi: 10.3969/j.issn.1000-4874.2006.02.012CONG Q,FENG Y,REN L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics:Series A,2006,21(2):232-238. doi: 10.3969/j.issn.1000-4874.2006.02.012 [10] STANFORD B,IFJU P,ALBERTANI R,et al. Fixed membrane wings for micro air vehicles: experimental charac-terization, numerical modeling, and tailoring[J]. Progress in Aerospace Sciences,2008,44(4):258-294. doi: 10.1016/j.paerosci.2008.03.001 [11] HU C L,WANG X D,WANG G Y,et al. The structures of unsteady cavitation shedding flow around an axisymmetric body with a blunt headform[J]. Journal of Mechanical Science and Technology,2018,32(1):199-210. doi: 10.1007/s12206-017-1221-y [12] JIANG X X,XU Y Q,WANG C,et al. Numerical simulations of gas-particle flow behavior created by low-level rotary-winged aircraft flight over particle bed[J]. Applied Mathematics and Mechanics,2019,40(3):397-406. doi: 10.1007/s10483-019-2449-9 [13] OEFFNER J,LAUDER G V. The hydrodynamic function of shark skin and two biomimetic applications[J]. The Journal of Experimental Biology,2012,215(Pt 5):785-795. doi: 10.1242/jeb.063040 [14] FUAAD P A,PRAKASH K A. Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: a DNS study[J]. Computers & Fluids,2019,181:208-223. doi: 10.1016/j.compfluid.2019.01.022 [15] MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[R]. AIAA-93-2906, 1993. doi: doi.org/10.2514/6.1993-2906 [16] BOROUCHAKI H, LAUG P, GEORGE P L. Parametric surface meshing using a combined advancing-front generalized Delaunay approach[J]. International Journal for Numerical Methods in Engineering, 2000, 49(1-2): 233-259. doi: 10.1002/1097-0207(20000910/20)49:1/2<233::AID-NME931>3.0.CO;2-G [17] VERSTEEG H, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. Apache Junction: World Publishing Corporation, 1995. [18] YANG D D,YU A,JI B,et al. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods[J]. Journal of Hydro-dynamics,2018,30(2):345-356. doi: 10.1007/s42241-018-0032-7 [19] RASTEGARI A,AKHAVAN R. The common mechanism of turbulent skin-friction drag reduction with superhydro-phobic longitudinal microgrooves and riblets[J]. Journal of Fluid Mechanics,2018,838:68-104. doi: 10.1017/jfm.2017.865 [20] ZHANG L,SHAN X B,XIE T. Active control for wall drag reduction: methods, mechanisms and performance[J]. IEEE Access,2020,8:7039-7057. doi: 10.1109/ACCESS.2020.2963843 [21] STRANG G, FIX G. An analysis of the finite element method[M]. Englewood: Prentice-Hall, 1973. [22] CHEN D K,CUI X X,CHEN H W. Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J]. Microscopy Research and Technique,2021,84(8):1862-1872. doi: 10.1002/jemt.23743 [23] LIU R,CHI Z D,CAO L,et al. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment[J]. Applied Surface Science,2020,534:147576. doi: 10.1016/j.apsusc.2020.147576 -