留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内窥火焰传感器技术的超声速燃烧感知实验研究

李忠朋 周芮旭 孟凡钊 陈池 李拓 连欢

李忠朋,周芮旭,孟凡钊,等. 基于内窥火焰传感器技术的超声速燃烧感知实验研究[J]. 实验流体力学,2022,36(2):102-114 doi: 10.11729/syltlx20220004
引用本文: 李忠朋,周芮旭,孟凡钊,等. 基于内窥火焰传感器技术的超声速燃烧感知实验研究[J]. 实验流体力学,2022,36(2):102-114 doi: 10.11729/syltlx20220004
LI Z P,ZHOU R X,MENG F Z,et al. Supersonic combustion sensing by the passive endoscopic flame sensor[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):102-114. doi: 10.11729/syltlx20220004
Citation: LI Z P,ZHOU R X,MENG F Z,et al. Supersonic combustion sensing by the passive endoscopic flame sensor[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):102-114. doi: 10.11729/syltlx20220004

基于内窥火焰传感器技术的超声速燃烧感知实验研究

doi: 10.11729/syltlx20220004
基金项目: 国家自然科学基金(91941104,11872366)
详细信息
    作者简介:

    李忠朋:(1994—),男,安徽安庆人,硕士研究生。研究方向:超声速湍流燃烧。通信地址:北京市怀柔区雁栖南四街26号中国科学院力学研究所(100190)。E-mail:1627706517@qq.com

    通讯作者:

    E-mail:hlian@imech.ac.cn

  • 中图分类号: V235.21

Supersonic combustion sensing by the passive endoscopic flame sensor

  • 摘要: 高动态频响传感器及作动机构是高性能控制系统FADEC的关键技术之一。开发了一种基于被动火焰自发光谱的内窥式光纤火焰传感器进行光学诊断,初步验证了光纤火焰传感器数据的燃烧过程感知价值。基于中国科学院力学研究所的直连式超声速燃烧实验台,模拟了来流总温1475 K、总压1.68 MPa、马赫数5.6的发动机工作状态。在不同当量比和动量通量比条件下,使用新开发的内窥式光纤火焰传感器,测量了以CH*表征的燃烧释热率和以C2*/CH*表征的局部当量比。结果表明:内窥式光纤传感器可感知燃烧室释热率的时空演变特性;内窥式光纤传感器可感知频域燃烧振荡特性,实验表明燃烧过程可能存在展向的热声振荡现象;内窥式光纤传感器C2*/CH*光信号可感知局部当量比的时空演变特性,结合CH*光信号可应用于混合场与燃烧场关联性的研究;局部火焰质心位置的统计特征表征了剪切层稳焰模式和射流尾迹稳焰模式。
  • 图  1  超燃冲压发动机直连式实验台示意图[28]

    Figure  1.  Schematic diagram of direct-connected experimental bench for scramjet[28]

    图  2  光纤传感器的安装位置

    Figure  2.  Installation position of the optical fiber sensor

    图  3  光纤传感器系统:

    Figure  3.  Fiber optic sensor system

    图  4  光路原理图

    Figure  4.  Optical path schematic

    图  5  工况1、2的纹影图像

    Figure  5.  Schlieren images of condition 1 and 2

    图  6  工况1、2的沿程压力分布

    Figure  6.  Pressure distribution along the model of condition 1 and 2

    图  7  工况1、2的沿程马赫数分布

    Figure  7.  Mach number distribution along the model of condition 1 and 2

    图  8  工况1、2的CH*瞬时图、均值图与标准差图

    Figure  8.  The transient, mean and standard deviation of CH* images from condition 1 and 2

    图  9  工况1条件下4个测点的CH*光信号

    Figure  9.  CH* chemiluminescence of four measuring points under condition 1

    图  10  工况2条件下4个测点的CH*光信号

    Figure  10.  CH* chemiluminescence of four measuring points under condition 2

    图  11  工况1高频压力信号的频域曲线

    Figure  11.  FFT of pressure under condition 1

    图  12  工况2高频压力信号的频域曲线

    Figure  12.  FFT of pressure under condition 2

    图  13  工况1 CH*光信号的频域曲线

    Figure  13.  FFT of CH* chemiluminescence under condition 1

    图  14  工况2 CH*光信号的频域曲线

    Figure  14.  FFTof CH* chemiluminescence under condition 2

    图  15  工况1条件下CH*、C2*/CH*与时间的关系

    Figure  15.  CH* and C2*/CH* versus time under condition 1

    图  16  工况2条件下CH*、C2*/CH*与时间的关系

    Figure  16.  CH* and C2*/CH* versus time under condition 2

    图  18  工况2 CH*和C2*/CH*的局部相关性

    Figure  18.  Local correlation between CH* and C2*/CH* under condition 2

    图  17  工况1 CH*和C2*/CH*的局部相关性

    Figure  17.  Local correlation between CH* and C2*/CH* under condition 1

    图  19  工况1 CH*延迟时间的统计特征

    Figure  19.  Statistical characteristics of CH* delay time under condition 1

    图  20  工况2 CH*延迟时间的统计特征

    Figure  20.  Statistical characteristics of CH* delay time under condition 2

    图  21  火焰质心位置的概率分布曲线

    Figure  21.  Probability distribution curve of flame centroid position

    表  1  工况1、2的实验参数

    Table  1.   Experimental parameters for condition 1 and 2

    工况喷注压力/MPa动量通量比当量比燃烧模态
    11.52.940.10超燃
    22.03.820.13亚燃
    下载: 导出CSV
  • [1] GARCÍA-ARMINGOL T,HARDALUPAS Y,TAYLOR A M K P,et al. Effect of local flame properties on chemiluminescence-based stoichiometry measurement[J]. Experimental Thermal and Fluid Science,2014,53:93-103. doi: 10.1016/j.expthermflusci.2013.11.009
    [2] MASHIO S, KURASHINA K, BAMBA T, et al. Unstart phenomenon due to thermal choke in scramjet module[C]//Proc of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. 2001: 1887. doi: 10.2514/6.2001-1887
    [3] SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power,1993,9(4):515-520. doi: 10.2514/3.23653
    [4] SCHULTZ I A, GOLDENSTEIN C S, STRAND C L, et al. Hypersonic scramjet testing via TDLAS measurements of temperature and column density in a reflected shock tunnel[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014. doi: 10.2514/6.2014-0389
    [5] SCHULTZ I A, GOLDENSTEIN C S, JEFFRIES J B, et al. Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1241. doi: 10.2514/6.2014-1241
    [6] AIZENGENDLER M, KRISHNA Y, KURTZ J, et al. A rugged, high-sensitivity, TDLAS-based oxygen sensor for a scramjet inlet[C]// Proc of Busan, KOREA. 2013.
    [7] 姚路,刘文清,阚瑞峰,等. 小型化TDLAS发动机测温系统的研究及进展[J]. 实验流体力学,2015,29(1):71-76. doi: 10.11729/syltlx20140025

    YAO L,LIU W Q,KAN R F,et al. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics,2015,29(1):71-76. doi: 10.11729/syltlx20140025
    [8] GUO J, GUO J, LIAO W, et al. TDLAS-based measurements of temperature and velocity in the combustor of scramjet[C]// 中国工程热物理学会会议论文集. 2012.
    [9] FURLONG E R,BAER D S,HANSON R K. Real-time adaptive combustion control using diode-laser absorption sensors[J]. Symposium (International) on Combustion,1998,27(1):103-111. doi: 10.1016/S0082-0784(98)80395-0
    [10] EBERT V,FERNHOLZ T,GIESEMANN C,et al. Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant[J]. Proceedings of the Combustion Institute,2000,28(1):423-430. doi: 10.1016/S0082-0784(00)80239-8
    [11] MILLER M F,KESSLER W J,ALLEN M G. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets[J]. Applied Optics,1996,35(24):4905. doi: 10.1364/ao.35.004905
    [12] LEE D, ANDERSON T. Measurements of fuel/air-acoustic coupling in lean premixed combustion systems[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-450
    [13] LEE J G,KIM K,SANTAVICCA D A. Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion[J]. Proceedings of the Combustion Institute,2000,28(1):415-421. doi: 10.1016/S0082-0784(00)80238-6
    [14] MICKA D, TORREZ S, DRISCOLL J. Heat release distribution in a dual-mode scramjet combustor-measurements and modeling[C]//Proc of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 2009: 7362. doi: 10.2514/6.2009-7362
    [15] MULLA I A,DOWLUT A,HUSSAIN T,et al. Heat release rate estimation in laminar premixed flames using laser-induced fluorescence of CH2O and H-atom[J]. Combustion and Flame,2016,165:373-383. doi: 10.1016/j.combustflame.2015.12.023
    [16] DANDY D S,VOSEN S R. Numerical and experimental studies of hydroxyl radical chemiluminescence in methane-air flames[J]. Combustion Science and Technology,1992,82(1-6):131-150. doi: 10.1080/00102209208951816
    [17] KOJIMA J,IKEDA Y,NAKAJIMA T. Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames[J]. Proceedings of the Combustion Institute,2000,28(2):1757-1764. doi: 10.1016/S0082-0784(00)80577-9
    [18] HIGGINS B,MCQUAY M Q,LACAS F,et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames[J]. Fuel,2001,80(11):1583-1591. doi: 10.1016/S0016-2361(01)00040-0
    [19] NORI V N,SEITZMAN J M. CH chemiluminescence modeling for combustion diagnostics[J]. Proceedings of the Combustion Institute,2009,32(1):895-903. doi: 10.1016/j.proci.2008.05.050
    [20] IKEDA Y, HASHIMOTO H, NAKAJIMA T, et al. Detailed local spectra measurement in high-pressure premixed laminar flame[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002. doi: 10.2514/6.2002-191
    [21] HARDALUPAS Y,ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame,2004,139(3):188-207. doi: 10.1016/j.combustflame.2004.08.003
    [22] LIU Y,TAN J G,WANG H,et al. Characterization of heat release rate by OH* and CH* chemiluminescence[J]. Acta Astronautica,2019,154:44-51. doi: 10.1016/j.actaastro.2018.10.022
    [23] SOLTANIAN H,TARGHI M Z,PASDARSHAHRI H. Chemiluminescence usage in finding optimum operating range of multi-hole burners[J]. Energy,2019,180:398-404. doi: 10.1016/j.energy.2019.05.104
    [24] YUAN Y M,ZHANG T C,YAO W,et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute,2017,36(2):2919-2925. doi: 10.1016/j.proci.2016.07.040
    [25] CAO D G,BROD H E,YOKEV N,et al. Flame stabilization and local combustion modes in a cavity-based scramjet using different fuel injection schemes[J]. Combustion and Flame,2021,233:111562. doi: 10.1016/j.combustflame.2021.111562
    [26] 王宽亮, 李飞, 曾徽, 等. 三维火焰层析重构技术探究[C]//高温气体动力学国家重点实验室2016年度夏季学术研讨会论文集. 2016.
    [27] MICKA D J, KNAUS D A, TEMME J, et al. Passive optical combustion sensors for scramjet engine control[C]//Proc of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. 2015: 3947. doi: 10.2514/6.2015-3947
    [28] 孟宇. 超燃冲压发动机加速过程及等离子体对超声速火焰结构的影响[D]. 北京: 中国科学院大学, 2019.
    [29] 连欢,顾洪斌,周芮旭,等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学,2021,35(1):97-108. doi: 10.11729/syltlx20200069

    LIAN H,GU H B,ZHOU R X,et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics,2021,35(1):97-108. doi: 10.11729/syltlx20200069
    [30] 唐鑫,严聪. 双模态超燃冲压发动机研究概述[J]. 飞航导弹,2012(3):86-92. doi: 10.11729/syltlx20200069
    [31] FOTIA M L,DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power,2012,29(1):261-273. doi: 10.2514/1.B34486
    [32] 肖保国,晏至辉,田野,等. 超燃发动机燃烧模态判别准则初步研究[J]. 推进技术,2015,36(8):1121-1126. doi: 10.3969/j.issn.1672-9897.2003.01.022

    XIAO B G,YAN Z H,TIAN Y,et al. Preliminary study on criterion of indentifying combustion mode for scramjet[J]. Journal of Propulsion Technology,2015,36(8):1121-1126. doi: 10.3969/j.issn.1672-9897.2003.01.022
    [33] 张鹏,俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量,2003,17(1):88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022
    [34] 王振国. 超声速气流中的火焰稳定与传播[M]. 北京: 科学出版社, 2015.
    [35] ROSSITER J. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[C]. Proc of Aeronautical Research Council Reports and Memo. 1964. doi: 10.2514/3.9334
    [36] HELLER H, BLISS D. The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression[C]//Proc of the 2nd Aeroacoustics Conference. 1975: 491. doi: 10.2514/6.1975-491
    [37] CHOU T, PATTERSON D J. Hydrocarbon emission sequence related to cylinder mal-distribution in a L-head engine[C]//Proc of the SAE Technical Paper Series. 1994. doi: 10.4271/940305
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  2283
  • HTML全文浏览量:  165
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-03-17
  • 录用日期:  2022-03-17
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日