Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure
-
摘要: 对超疏水微沟槽和微凸柱面湍流边界层的减阻机理进行了实验研究。使用高时间分辨率粒子图像测速仪(TRPIV),测量了亲水壁面、超疏水微沟槽壁面和超疏水微凸柱壁面湍流边界层内的瞬时速度场,对比分析了3种壁面的壁面摩擦切应力,发现超疏水壁面都产生了减阻效果,但超疏水微沟槽壁面的减阻率(13.8%)要大于超疏水微凸柱壁面(10.2%)。通过对比分析湍流边界层内3种壁面对应的平均速度剖面、湍流脉动强度和雷诺切应力剖面,证实流体在超疏水壁面具有滑移速度,且在$15 < {y^ + } < 100$区域的同一法向高度上,亲水壁面、超疏水微沟槽及超疏水微凸柱壁面对应的流向湍流脉动强度依次减弱;同时在$30 < {y^ + } < 80$区域的同一法向高度上,超疏水微凸柱壁面、亲水壁面和超疏水微沟槽壁面对应的法向湍流脉动强度依次减弱。在整个法向高度上,亲水壁面、超疏水微凸柱壁面和超疏水微沟槽壁面的雷诺切应力的最大值依次减小。以${\Lambda _{{\text{ci}}}}$准则识别出的顺向涡为条件进行条件采样和相位平均,并分别与亲水壁面对比,发现在${y^ + } \approx 63$附近,超疏水微沟槽壁面展向涡诱导的第四象限事件幅值减弱,其构成的扫掠事件强度减小,进而实现减阻。为进一步分析湍流脉动能量,使用本征正交分解,将湍流边界层内全场的瞬时脉动速度在时间上和流−法向空间进行求和并进行无量纲化,用来表征流场的脉动程度。结果表明:超疏水微凸柱壁面的展向滑移的增阻特性,削弱了其流向滑移带来的减阻效果。超疏水微沟槽壁面的流向滑移特性能有效地抑制湍流脉动,从而达到更好的减阻效果。Abstract: The drag reduction mechanism of the wall turbulent boundary layer with superhydrophobic micro-riblets and micro-convex posts is studied experimentally. The instantaneous velocity field in the turbulent boundary layer of the hydrophilic wall, superhydrophobic micro-riblets wall and micro-convex posts wall is measured by high time resolution particle image velocimetry (TRPIV). The frictional shear stress of the three kinds of walls is compared and analyzed. It is found that the superhydrophobic walls achieve drag reduction effect. However, the drag reduction rate of the superhydrophobic micro-riblets wall is higher than that of the superhydrophobic micro-convex posts wall, and the drag reduction rate of the superhydrophobic micro-riblets wall is 13.8%, while the drag reduction rate of the superhydrophobic micro-convex posts wall is 10.2%. Through comparison and analysis on the three kinds of wall corresponding average velocity profile in the turbulent boundary layer, turbulence intensity and Reynolds shear stress profile, it is found that the fluid indeed has sliding speed in the superhydrophobic wall, and in the area of the same normal height at $15 < {y^ + } < 100$, the streamwise turbulence intensity corresponding to the hydrophilic wall, superhydrophobic micro-riblets and micro-convex posts wall decreases successively. At the same time, in the area of the same normal height at $30 < {y^ + } < 80$,the wall-normal turbulence intensity of the superhydrophobic micro-convex posts, hydrophilic wall and superhydrophobic micro-riblets wall decrease successively. Over the whole wall-normal height, the maximum values of Reynolds shear stress on the hydrophilic wall, superhydrophobic micro-convex posts and micro-riblets wall decrease successively. Based on the conditional sampling and phase averaging of the spanwise vortex identified by the ${\Lambda _{{\text{ci}}}}$criterion, it is found that the amplitude of the fourth quadrant event induced by the spanwise vortex of the superhydrophobic micro-riblets wall weakens nearby at ${y^{\text{ + }}} \approx 63$, which leads to the intensity of its sweep events decreasing, and then the drag reduction is realized. In order to further analyze the turbulent fluctuation energy, the instantaneous fluctuation velocity of the whole turbulent boundary layer is summed in time and over the streamwise-normal space by using Proper Orthogonal Decomposition and it is dimensionless to characterize the fluctuation degree of the flow field. The results show that the spanwise slip characteristics of the superhydrophobic micro-convex posts increase the drag and weaken the drag reduction effect caused by the streamwise slip. The streamwise slip characteristics of the superhydrophobic micro-riblets wall can effectively suppress turbulence fluctuation and achieve better drag reduction effects.
-
表 1 基本湍流减阻参数
Table 1. Basic turbulent drag reduction parameters
参数 亲水壁面 超疏水微沟槽壁面 超疏水微凸柱壁面 自由来流速度${U_\infty }/\left( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)$ 0.35 0.35 0.35 壁面摩擦速度
${u_\tau }/\left( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)$0.0153 0.0142 0.0145 内尺度雷诺数
$R{e_\tau }$657 642 629 壁面摩擦切应力
${\tau _w}/\left( {kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}} \right)$0.232915 0.200818 0.209132 壁面摩擦系数
${C_f}$0.003698 0.003149 0.003277 减阻率
$\eta $13.8% 10.2% 表 2 各壁面湍动能的前10阶模态的能量贡献
Table 2. Energy contributions of the first 10 POD modes to the TKE of all surface
态 亲水壁面 合计 超疏水微沟槽
壁面合计 超疏水微凸柱
壁面合计 1 0.175 0.175 0.185 0.185 0.180 0.180 2 0.088 0.264 0.097 0.282 0.103 0.282 3 0.057 0.321 0.054 0.336 0.057 0.339 4 0.047 0.369 0.045 0.382 0.054 0.393 5 0.036 0.404 0.034 0.416 0.039 0.433 6 0.029 0.433 0.029 0.445 0.030 0.462 7 0.027 0.461 0.028 0.473 0.027 0.489 8 0.024 0.485 0.021 0.494 0.023 0.513 9 0.020 0.505 0.019 0.514 0.020 0.533 10 0.018 0.523 0.019 0.532 0.018 0.550 -
[1] LIU M, MA L R. Drag reduction methods at solid-liquid interfaces[J]. Friction, 2022, 10(4): 491–515. doi: 10.1007/s40544-021-0502-8 [2] WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230–8293. doi: 10.1021/cr400083y [3] ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42: 89–109. doi: 10.1146/annurev-fluid-121108-145558 [4] MARUSIC I, MATHIS R, HUTCHINS N. Predictive model for wall-bounded turbulent flow[J]. Science, 2010, 329(5988): 193–196. doi: 10.1126/science.1188765 [5] ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261–304. doi: 10.1146/annurev.fl.23.010191.001401 [6] WESTERWEEL J, ELSINGA G E, ADRIAN R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45: 409–436. doi: 10.1146/annurev-fluid-120710-101204 [7] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1–54. doi: 10.1017/s0022112000001580 [8] ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4): 041301. doi: 10.1063/1.2717527 [9] DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8): 085103. doi: 10.1063/1.3207885 [10] KITAGAWA A, SHIOMI Y, MURAI Y, et al. Transient velocity profiles and drag reduction due to air-filled superhydrophobic grooves[J]. Experiments in Fluids, 2020, 61(11): 1–11. doi: 10.1007/s00348-020-03070-x [11] LEE C, CHOI C H, KIM C J “. Structured surfaces for a giant liquid slip[J]. Physical Review Letters, 2008, 101(6): 064501. doi: 10.1103/physrevlett.101.064501 [12] LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 176. doi: 10.1007/s00348-016-2264-z [13] XU M C, GRABOWSKI A, YU N, et al. Superhydrophobic drag reduction for turbulent flows in open water[J]. Physical Review Applied, 2020, 13(3): 034056. doi: 10.1103/physrevapplied.13.034056 [14] PARK H, CHOI C H, KIM C J. Superhydrophobic drag reduction in turbulent flows: a critical review[J]. Experiments in Fluids, 2021, 62(11): 229. doi: 10.1007/s00348-021-03322-4 [15] LING H J, SRINIVASAN S, GOLOVIN K, et al. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2016, 801: 670–703. doi: 10.1017/jfm.2016.450 [16] ABU ROWIN W, GHAEMI S. Streamwise and spanwise slip over a superhydrophobic surface[J]. Journal of Fluid Mechanics, 2019, 870: 1127–1157. doi: 10.1017/jfm.2019.225 [17] 姚朝晖, 张静娴, 郝鹏飞. 表面微纳结构对气-水界面稳定性和流动减阻的影响[J]. 实验流体力学, 2020, 34(2): 73–79.YAO Z H, ZHANG J X, HAO P F. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73–79. [18] VAJDI HOKMABAD B, GHAEMI S. Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure[J]. Physics of Fluids, 2016, 28(1): 015112. doi: 10.1063/1.4940325 [19] WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8): 085106. doi: 10.1063/1.3213607 [20] MARTELL M B, PEROT J B, ROTHSTEIN J P. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2009, 620: 31–41. doi: 10.1017/s0022112008004916 [21] JELLY T O, JUNG S Y, ZAKI T A. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture[J]. Physics of Fluids, 2014, 26(9): 095102. doi: 10.1063/1.4894064 [22] MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): L55–L58. doi: 10.1063/1.1755723 [23] SEO J, GARCÍA-MAYORAL R, MANI A. Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2015, 783: 448–473. doi: 10.1017/jfm.2015.573 [24] BUSSE A, SANDHAM N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5): 055111. doi: 10.1063/1.4719780 [25] CLAUSER F H. The turbulent boundary layer[M]//Advances in Applied Mechanics. Amsterdam: Elsevier, 1956: 1-51. doi: 10.1016/s0065-2156(08)70370-3 [26] WEI T, SCHMIDT R, MCMURTRY P. Comment on the Clauser chart method for determining the friction velocity[J]. Experiments in Fluids, 2005, 38(5): 695–699. doi: 10.1007/s00348-005-0934-3 [27] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fl.23.010191.003125 [28] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x [29] DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160 [30] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539–575. doi: 10.1146/annurev.fl.25.010193.002543 [31] MARUSIC I, MONTY J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51: 49–74. doi: 10.1146/annurev-fluid-010518-040427 [32] MOIN P. Revisiting Taylor’s hypothesis[J]. Journal of Fluid Mechanics, 2009, 640: 1–4. doi: 10.1017/s0022112009992126 [33] KROGSTAD P Å, KASPERSEN J H, RIMESTAD S. Convection velocities in a turbulent boundary layer[J]. Physics of Fluids, 1998, 10(4): 949–957. doi: 10.1063/1.869617 [34] DENNIS D J C, NICKELS T B. On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 614: 197–206. doi: 10.1017/s0022112008003352 -