Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body
-
摘要: 在常规高超声速风洞中,开展了针对升力体模型的边界层转捩红外测量实验,研究了不同单位雷诺数和马赫数对升力体边界层转捩的影响规律,并与eN方法计算结果进行了对比。实验模型长度为800 mm,来流的单位雷诺数为0.46×107~3.94×107 m–1,马赫数为5~8,迎角为0°。通过大面积红外热图技术获得了模型表面温升分布,得到了边界层转捩阵面形状。实验结果表明:在升力体边界层中存在横流失稳和第二模态转捩;随着单位雷诺数增大,横流转捩效应增强,模型下表面和上表面温升增加,转捩阵面前移,转捩区域扩大;随着马赫数增大,横流转捩效应减弱,转捩位置后移,转捩区域显著减小;不同单位雷诺数和马赫数下的转捩N值比较接近,但上、下表面的转捩N值不同(下表面约为6,上表面约为2.5),侧缘在高单位雷诺数下会出现高频第二模态转捩。Abstract: For a lifting body model, the boundary layer transition infrared thermogram measurement experiment was carried out in the conventional hypersonic wind tunnel, and the influence of different unit Reynolds number and Mach number on the lifting body boundary layer transition was studied, which was compared with the calculation results of the eN method. The length of the experimental model is 800 mm, the unit Reynolds number is 0.46×107~3.94×107 m–1, the Mach number is 5~8, and the angle of attack is 0°. The transition position and transition front of the boundary layer on the surface of the model are obtained by the large-area infrared thermogram technology. The analysis of the experimental results shows that there are crossflow instability and the second mode transition in the boundary layer of the lifting body. As the unit Reynolds number increases, the crossflow transition effect increases, the temperature rise on the lower and upper surfaces of the model increases, the transition front moves forward, and the transition area expands; as the Mach number increases, the crossflow transition effect gradually weakens and the transition position moves downstream, and the transition area significantly shrinks back. Moreover, the transition N factor at different Mach numbers and unit Reynolds numbers are relatively close, but the N factors of the upper and lower surfaces are different. The lower surface is about 6, and the upper surface is about 2.5. The high-frequency second mode transition occurs in the side edge at high unit Reynolds numbers.
-
Key words:
- lifting body /
- hypersonic wind tunnel /
- boundary layer transition /
- infrared thermogram
-
表 1 实验状态
Table 1. Test conditions
编号 Ma∞ Re∞ /m–1 α /(°) 研究内容 1 6 0.46×107~3.94×107 0 雷诺数对下表面、
上表面转捩的影响2 5~8 1.00×107 0 马赫数对下表面、
上表面转捩的影响表 2 流场参数
Table 2. Parameters of flow field
Ma∞ p0/MPa T0/K p∞/Pa T∞/K Re∞/m–1 车次号 模型 5 0.50 381 988 64 0.99×107 190376 下表面 6 0.51 485 339 60 0.46×107 190362 下表面 6 1.11 487 726 60 0.98×107 190361 下表面 6 2.78 492 1740 60 2.38×107 190364 下表面 6 4.83 506 3030 61 3.94×107 190365 下表面 7 2.45 610 608 57 1.04×107 190350 下表面 8 4.4 724 436 52 0.99×107 190330 下表面 5 0.52 387 1020 65 1.00×107 190374 上表面 6 0.48 479 316 59 0.44×107 190355 上表面 6 1.10 489 715 60 0.96×107 190354 上表面 6 2.81 523 1780 64 2.18×107 190356 上表面 7 2.47 609 613 57 1.05×107 190353 上表面 8 4.37 733 433 53 0.97×107 190334 上表面 -
[1] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337.CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. [2] 段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic bound-ary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041 [3] 孙杭义, 陈喜兰, 罗月培, 等. 高超声速飞行器边界层转捩飞行实验项目地面试验进展[J]. 飞航导弹, 2020(6): 23–28. [4] 李强, 赵磊, 陈苏宇, 等. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究[J]. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155LI Q, ZHAO L, CHEN S Y, et al. Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition[J]. Acta Physica Sinica, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155 [5] CASPER K M, BERESH S J, HENFLING J F, et al. Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone[J]. AIAA Journal, 2016, 54(4): 1250–1263. doi: 10.2514/1.J054033 [6] JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1736 [7] 王文, 蒋华兵. 钝锥表面脉动压力风洞试验研究[J]. 装备环境工程, 2021, 18(3): 45–50.WANG W, JIANG H B. Wind tunnel test research on surface pressure fluctuations of a blunt cone[J]. Equipment Environmental Engineering, 2021, 18(3): 45–50. [8] 陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7°half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172 [9] 易仕和, 刘小林, 牛海波, 等. 高超声速边界层流动稳定性实验研究[J]. 空气动力学学报, 2020, 38(1): 137–142.YI S H, LIU X L, NIU H B, et al. Experimental study on flow stability of hypersonic boundary layer[J]. Acta Aero-dynamica Sinica, 2020, 38(1): 137–142. [10] 刘小林. 高超声速条件下圆锥边界层转捩相关实验研究[D]. 长沙: 国防科技大学, 2019.LIU X L. Experimental investigation of the hypersonic boundary layer transition on the cones[D]. Changsha: National University of Defense Technology, 2019. [11] JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-5004 [12] WHEATON B M, BERRIDGE D C, WOLF T D, et al. Boundary layer transition (BOLT) flight experiment overview[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2892 [13] BERRIDGE D C, MCKIERNAN G, WADHAMS T P, et al. Hypersonic ground tests in support of the boundary layer transition (BOLT) flight experiment[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2893 [14] THOME J, DWIVEDI A, NICHOLS J W, et al. Direct numerical simulation of BOLT hypersonic flight vehicle[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2894 [15] MOYES A, KOCIAN T S, MULLEN C D, et al. Pre-flight boundary-layer stability analysis of BOLT geometry[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2895 [16] KOSTAK H, BOWERSOX R D, MCKIERNAN G, et al. Freestream disturbance effects on boundary layer instability and transition on the AFOSR BOLT geometry[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0088 [17] COOK D A, THOME J, NICHOLS J W, et al. Receptivity analysis of BOLT to distributed surface roughness using input-output analysis[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0089 [18] BERRIDGE D C, KOSTAK H, MCKIERNAN G, et al. Hypersonic ground tests with high-frequency instrumentation in support of the boundary layer transition (BOLT) flight experiment[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0090 [19] BERRY S A, MASON M L, GREENE F, et al. LaRC aerothermodynamic ground tests in support of BOLT flight experiment[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0091 [20] 高清, 李建华, 李潜. 升力体高超声速飞行器横向气动特性研究[J]. 实验流体力学, 2015, 29(1): 43–48. doi: 10.11729/syltlx20130107GAO Q, LI J H, LI Q. Study on lateral stability of hypersonic lifting-configurations[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 43–48. doi: 10.11729/syltlx20130107 [21] LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637–1647. doi: 10.1007/s10409-021-01136-5 [22] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317.CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317. [23] 陈曦, 董思卫, 袁先旭, 等. 升力体(HyTRV)边界层全局稳定性分析[C]//第十九届全国激波与激波管学术会议论文集. 2020. [24] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372.LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372. -