Comparative analysis between thin-film gauges and ALTP sensors in shock tunnel tests
-
摘要: 激波风洞试验中的主要测试量是热流密度,且多采用薄膜热流计。针对薄膜热流计的热流测试结果缺乏直接验证手段以及由此带来的测热结果不确定度偏大等问题,结合高精度可溯源的热流传感器标定实验可保证原子层热电堆(ALTP)热流传感器测热结果的准确性和可靠性,且ALTP热流传感器响应时间短又线性度优良,在多个流场条件下的激波风洞试验中开展了不同测热原理的多支这两类热流传感器测热结果的交叉对比验证。对比试验显示出ALTP热流传感器和薄膜热流计在不同流场参数下的激波风洞试验中的测热结果相对稳定,中高热流下两者测试结果之间的相对差异在8%以内。结合对比标定溯源链以及激波风洞试验测热结果的讨论,展现了利用ALTP热流传感器在激波风洞试验中在线标定薄膜热流计的可行性。Abstract: In the shock tunnel tests, the main parameter to measure is the heat flux density, and the thin-film resistance gauges (TFRGs) are frequently used. As the uncertainty of the measured heat flux with TFRGs is relatively high resulting from the lack of direct validation method for TFRGs, the atomic layer thermopile (ALTP) heat-flux sensors are applied in shock tunnel tests for comparison with the TFRGs. ALTP sensors have a fast response time and a good linearity, and it can be used in a long duration to measure low heat flux density, which ensures that they can be easily calibrated with the high-accuracy light-based calibration device, so the transfer calibration method is established to on-line calibrate TFRGs in the shock tunnel tests. The experimental results confirm the stable measured heat flux with the ALTP sensors and the TFRGs in the different shock tunnel tests, and the difference between the two kinds of heat-flux sensors is less than 8%. Based on the discussion on the tracing chains of the transfer method for calibrating heat-flux sensors and the measured heat flux in tests, the comparison results show the potential that the ALTP heat-flux sensors can be used to on-line calibrate TFRGs in shock tunnel tests.
-
表 1 激波风洞试验参数
Table 1. Flow conditions of shock tunnel tests
流场参数 流场1 流场2 流场3 Ma 10.1 10.0 10.2 Re/m−1 3.4 × 106 3.3 × 107 1.6 × 107 总温/K 1500 909 928 总压/MPa 11.12 3.85 21.15 表 2 激波风洞试验中薄膜热流计和ALTP热流传感器的测热结果
Table 2. the measured heat flux with TFRGs and ALTP heat-flux sensors in shock tunnel tests
流场1(攻角0°) 流场2(攻角0°) 流场1(攻角10°) 流场1(攻角10°) 流场3(攻角10°) 修正系数 热流
(W/cm2)差异
(%)热流
(W/cm2)差异
(%)热流
(W/cm2)差异
(%)热流
(W/cm2)差异
(%)热流
(W/cm2)差异
(%)ALTP_1 1.47 −24.5 0.40 −25 7.98 4.01 8.40 4.64 7.78 −7.58 0.958 TFRG_1 1.11 0.30 8.30 8.79 7.19 ALTP_2 0.63 12.6 0.20 3.9 4.11 −9.34 4.34 −4.30 3.85 −41.1 1.07 TFRG_2 0.71 0.21 3.73 4.15 2.27 ALTP_3 1.08 −7.92 0.33 −25.1 8.18 −0.83 8.39 6.26 7.23 −4.81 0.971 TFRG_3 1.0 0.25 8.11 8.92 6.89 ALTP_4 1.07 −18.4 0.29 −23.9 7.40 −0.66 7.53 7.05 6.35 −5.59 0.967 TFRG_4 0.87 0.22 7.35 8.06 6.00 ALTP_5 1.19 −20.1 0.30 −8.92 9.02 3.25 9.88 −3.05 7.04 7.75 1.00 TFRG_5 0.95 0.28 9.32 9.58 7.59 -
[1] 李强, 刘济春, 孔荣宗. 耐冲刷薄膜铂电阻热流传感器研制[J]. 电子测量与仪器学报, 2017, 31(4): 623–629. doi: 10.13382/j.jemi.2017.04.019LI Q, LIU J C, KONG R Z. Development of anti-erosion platinum thin film resistance thermal sensor[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(4): 623–629. doi: 10.13382/j.jemi.2017.04.019 [2] LU F K, KINNEAR K M. Characterization of thin-film heat-flux gauges[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 548–549. doi: 10.2514/2.6477 [3] LI J P, CHEN H, ZHANG S Z, et al. On the response of coaxial surface thermocouples for transient aerodynamic heating measurements[J]. Experimental Thermal and Fluid Science, 2017, 86: 141–148. doi: 10.1016/j.expthermflusci.2017.04.011 [4] MANJHI S K, KUMAR R. Performance assessment of K-type, E-type and J-type coaxial thermocouples on the solar light beam for short duration transient measurements[J]. Measurement, 2019, 146: 343–355. doi: 10.1016/j.measurement.2019.06.035 [5] 张扣立, 周嘉穗, 孔荣宗, 等. CARDC激波风洞TSP技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151 [6] LIU X, SHAO H Y, ZHOU W W, et al. Apparent temperature in temperature-sensitive paint measurement and its effect on surface heat flux determination for hypersonic flows[J]. Measurement Science and Technology, 2020, 31(12): 125302. doi: 10.1088/1361-6501/ab9fd9 [7] YANG K. A new calibration technique for thin-film gauges and coaxial thermocouples used to measure the transient heat flux[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1–9. doi: 10.1109/TIM.2021.3132064 [8] 王宏宇, 王辉, 石义雷, 等. 一种高超声速稀薄流激波干扰气动热测量技术[J]. 宇航学报, 41(12), 2020: 1525–1532. doi: 10.3873/j.issn.1000-1328.2020.12.006WANG H Y, WANG H, SHI Y L, et al. An aerothermodynamics measuring technique for shock interactions in hypersonic low-density flow[J]. Journal of Astronautics, 41(12), 2020: 1525–1532. doi: 10.3873/j.issn.1000-1328.2020.12.006 [9] 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.LIU C P. Measurement of heat flow in aerodynamic heat and thermal protection test[M]. Beijing: National Defense Industry Press, 2013. [10] COOK W J, FELDERMAN E J. Reduction of data from thin-film heat-transfer gages - A concise numerical technique[J]. AIAA Journal, 1966, 4(3): 561–562. doi: 10.2514/3.3486 [11] ASTM standard. Standard test method for measuring extreme heat-transfer rates from high-energy environments using a transient null-point calorimeter, ASTM E598-96[S]. Pennsylvania : ASTM International, 1996. doi: 10.1520/E0598-96 [12] 林键, 陈星, 王丹, 等. 柔性铂电阻传感器在舵缝热环境试验中的应用[J]. 气动研究与实验, 2021, 33(02): 91–97. doi: 10.12050/are20210209LIN J, CHEN X, WANG D, et al. Application of flexible platinum sensor in aerothermal environment test of rudder gap[J]. Aerodynamic Research & Experiment, 2021, 33(02): 91–97. doi: 10.12050/are20210209 [13] 张宏安, 黄见洪, 秦峰, 等. 基于脉冲加热法的薄膜热流传感器热物性参数测量技术研究[J]. 实验流体力学, 2018, 32(6): 74–78,93. doi: 10.11729/syltlx20170120ZHANG H A, HUANG J H, QIN F, et al. Thermal property measuring techniques of thin-film heat flux sensors based on pulse-heating method[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 74–78,93. doi: 10.11729/syltlx20170120 [14] 杨凯, 刘济春, 陈苏宇, 等. 薄膜热电阻热流传感器的对比标定结果及分析[J/OL]. 实验流体力学. [ 2022-05-16]2022-05-16 YANG K, LIU J C, CHEN S Y, et al. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J/OL]. Journal of Experiments in Fluid Mechanics. [ 2022-05-16]doi: 10.11729/syltlx20210129 [15] MURTHY A V, TSAI B K, GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4): 479–488. doi: 10.6028/jres.102.032 [16] MURTHY A V, TSAI B K, SAUNDERS R D. Transfer calibration validation tests on a heat flux sensor in the 51 mm high-temperature blackbody[J]. Journal of Research of the National Institute of Standards and Technology, 2001, 106(5): 823–831. doi: 10.6028/jres.106.039 [17] 杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学, 2020, 34(6): 86–91. doi: 10.11729/syltlx20190148YANG K, ZHU T, WANG X, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86–91. doi: 10.11729/syltlx20190148 [18] 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 124956. doi: 10.7527/S1000-6893.2020.24956LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124956. doi: 10.7527/S1000-6893.2020.24956 [19] 段金鑫, 李强, 杨凯, 等. 原子层热电堆热流传感器在激波风洞试验中的应用[J]. 推进技术, 2022, 43(3): 27–34. doi: 10.13675/j.cnki.tjjs.200934DUAN J X, LI Q, YANG K, et al. Atomic layer thermopile heat-flux sensor and its application in shock tunnel tests[J]. Journal of Propulsion Technology, 2022, 43(3): 27–34. doi: 10.13675/j.cnki.tjjs.200934 [20] YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150: 107039. doi: 10.1016/j.measurement.2019.107039 [21] 朱新新, 朱涛, 杨凯, 等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学, 2021, 35(4): 106–111. doi: 10.11729/syltlx20200065ZHU X X, ZHU T, YANG K, et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 106–111. doi: 10.11729/syltlx20200065 [22] TIM R, HELMUT K, UWE G, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor—part I: sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1): 011018. doi: 10.1115/1.2751141 [23] KNAUSS H, ROEDIGER T, BOUNTIN D A, et al. Novel sensor for fast heat flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 255–265. doi: 10.2514/1.32011 [24] WANG H, ZHU T, ZHU X X, et al. Inverse estimation of hot-wall heat flux using nonlinear artificial neural networks[J]. Measurement, 2021, 181: 109648. doi: 10.1016/j.measurement.2021.109648 [25] 胡芃, 陈则韶. 量热技术和热物性测定[M]. 2版. 合肥: 中国科学技术大学出版社, 2009.HU P, CHEN Z S. Thermotechnical and thermophysical properties measurement[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2009. [26] 庄新港, 刘红博, 张鹏举, 等. 低温辐射计热结构设计与分析[J]. 物理学报, 2019, 68(6): 27–33. doi: 10.7498/aps.68.20181880ZHUANG X G, LIU H B, ZHANG P J, et al. Design and analysis of thermo-structure for cryogenic radiometer[J]. Acta Physica Sinica, 2019, 68(6): 27–33. doi: 10.7498/aps.68.20181880 [27] ROBERT G. A transducer for the measurement of heat-flow rate[J]. Journal of Heat Transfer, 1960, 82(4): 396–398. doi: 10.1115/1.3679968 [28] 罗跃, 杨凯, 黄伟, 等. 用于高温高压剪切流场的Gardon计研制[J]. 科学技术与工程, 2017, 17(29): 139–144. doi: 10.3969/j.issn.1671-1815.2017.29.020LUO Y, YANG K, HUANG W, et al. Design and fabrication of gardon fage used in shear flow filed of high temperature/pressure[J]. Science Technology and Engineering, 2017, 17(29): 139–144. doi: 10.3969/j.issn.1671-1815.2017.29.020 [29] 曾磊, 石友安, 孔荣宗, 等. 薄膜电阻温度计原理性误差分析及数据处理方法研究[J]. 实验流体力学, 2011, 25(1): 79–83. doi: 10.3969/j.issn.1672-9897.2011.01.016ZENG L, SHI Y A, KONG R Z, et al. Study on principle error analysis and data processing method of thin film resistance thermometer[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1): 79–83. doi: 10.3969/j.issn.1672-9897.2011.01.016 [30] 钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185 [31] SHI Y A, ZENG L, QIAN W Q, et al. A data processing method in the experiment of heat flux testing using inverse methods[J]. Aerospace Science and Technology, 2013, 29(1): 74–80. doi: 10.1016/j.ast.2013.01.009 -