The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle
-
摘要: 以内外流一体化设计的飞行器为研究对象,对比分析了内外流场气动热仿真和风洞试验的一致性,定量分析了气动热仿真与风洞试验之间的差异,并研究了产生差异的原因。气动热仿真采用有限体积法求解Navier−Stokes方程,湍流模型为SA,空间格式为Roe的FDS,时间格式为LU−SGS。在FD−20a激波风洞中开展风洞试验,来流马赫数6,单位雷诺数1.14 × 107~2.98 × 107 m−1,迎角0°~8°。仿真与试验的对比结果表明:沿流向流动干扰复杂程度增大,热流模拟一致性降低;压缩面流动以附着流和小分离为主,仿真与试验一致性较好,平均差异约22.3%;在分离与激波边界层干扰等作用下,与压缩面相比,内流的仿真与试验差异增大,其中喉道平均差异约43.5%,隔离段平均差异约31.8%。受Edney型激波干扰的作用,唇口的仿真与试验在三维空间分布上的最大差异达到100%。从网格、数值方法、非定常特性和不确定度评估等方面,归纳总结了沿流向气动热仿真与试验差异增大的原因。Abstract: In order to improve the accuracy of simulation and obtain the aerodynamic heating consistency of the prediction method for the typical integrated design of the aircraft forebody model, experiments were carried out at FD−20a shock tunnel under the condition of Ma = 6, Re = 1.14 × 107~2.98 × 107 m−1, α = 0°~8°. Numerical simulations were applied through the compressible Navier−Stokes equation implemented with the finite volume method, Roe’s flux difference splitting scheme, LU−SGS spatial method and Spalart–Allmaras (SA) turbulence model. Simulation results were compared with the experimental data to validate the prediction methods. Results show that with the increase of the complexity and disturbance intensity, the heat flux consistency decreases. The compression surface flow was dominated by the attached flow and small separation, where relative good consistency was found between the simulation and experimental data with the average difference being about 22.3%. The throat boundary layer was interfered by shock waves, and 43.5% difference was found between the heat flux simulation and experimental data. The heat flux difference in the isolation section increased to 31.8%. When the oblique shock impinged on the subsonic part of the bow shock and three dimensional flow patterns were obvious, the difference of heat flux reached the maximum of around 100% in three dimensional areas. Mesh, simulation methods and unsteady characteristics are concluded as the reasons for heat flux consistency decreasing along the airflow.
-
表 1 风洞模拟流场参数表
Table 1. Experimental flow field parameter
试验编号 前室
总温/K前室
总压/MPaMa∞ ReL α/(°) 1 773 2.77 5.95 1.14 × 107 0 2 773 2.77 5.95 1.14 × 107 4 3 773 2.77 5.95 1.14 × 107 6 4 773 2.77 5.95 1.14 × 107 8 5 582 4.51 5.95 2.98 × 107 0 6 582 4.51 5.95 2.98 × 107 4 7 582 4.51 5.95 2.98 × 107 6 8 582 4.51 5.95 2.98 × 107 8 表 2 唇口中心截面上无量纲峰值热流对比
Table 2. Comparison of simulation and experiment results of dimensionless heat flux for inlet lip at symmetry surface
试验编号 ReL α/(°) 无量纲峰值
热流(仿真)无量纲峰值
热流(试验)e 1 1.14 × 107 0 1.1 0.9 22.2% 2 1.14 × 107 4 1.1 0.9 22.2% 3 1.14 × 107 6 1.0 1.5 33.3% 4 1.14 × 107 8 1.9 1.7 11.7% 5 2.98 × 107 0 1.0 0.9 11.1% 6 2.98 × 107 4 1.0 0.8 25.0% 7 2.98 × 107 6 0.8 0.8 0 8 2.98 × 107 8 2.0 1.4 42.9% -
[1] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43–59. doi: 10.11729/syltlx20190028QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43–59. doi: 10.11729/syltlx20190028 [2] 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541–587. doi: 10.6052/1000-0992-16-009YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 541–587. doi: 10.6052/1000-0992-16-009 [3] 童福林, 段俊亦, 周桂宇, 等. 激波/湍流边界层干扰压力脉动特性数值研究[J]. 力学学报, 2021, 53(7): 1829–1841. doi: 10.6052/0459-1879-21-094TONG F L, DUAN J Y, ZHOU G Y, et al. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829–1841. doi: 10.6052/0459-1879-21-094 [4] 陈苏宇. 高超声速压缩拐角气动热环境研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014.CHEN S Y. Investigation of aerothermal environment of hypersonic compression corners[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2014. [5] 李素循, 倪招勇. 高超声速层流干扰流场研究[J]. 宇航学报, 2003, 24(6): 547–551. doi: 10.3321/j.issn:1000-1328.2003.06.001LI S X, NI Z Y. Investigation of laminar interactive flowfield in hypersonic flow[J]. Journal of Astronautics, 2003, 24(6): 547–551. doi: 10.3321/j.issn:1000-1328.2003.06.001 [6] WIETING A, HOLDEN M. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8[C]// Proc of the 22nd Thermophysics Conference. 1987. doi: 10.2514/6.1987-1511 [7] HOLDEN M, MOSELLE J, WIETING A, et al. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow[C]//Proc of the 26th Aerospace Sciences Meeting. 1988. doi: 10.2514/6.1988-477 [8] 潘沙, 田正雨, 冯定华, 等. 超燃冲压发动机唇口气动热计算研究与分析[J]. 航空动力学报, 2009, 24(9): 2096–2100. doi: 10.13224/j.cnki.jasp.2009.09.030PAN S, TIAN Z Y, FENG D H, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip[J]. Journal of Aerospace Power, 2009, 24(9): 2096–2100. doi: 10.13224/j.cnki.jasp.2009.09.030 [9] 肖丰收, 李祝飞, 朱雨建, 等. 第Ⅳ类激波-激波干扰非定常性及其敏感因素分析[J]. 空气动力学学报, 2017, 35(1): 20–26. doi: 10.7638/kqdlxxb-2015.0028XIAO F S, LI Z F, ZHU Y J, et al. Numerical investigation on some key factors for the unsteady type Ⅳ shock-shock interaction[J]. Acta Aerodynamica Sinica, 2017, 35(1): 20–26. doi: 10.7638/kqdlxxb-2015.0028 [10] 张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50–57. doi: 10.11729/syltlx20180002ZHANG E L, LI Z F, LI Y M, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50–57. doi: 10.11729/syltlx20180002 [11] HOLDEN M S. Studies of scramjet performance in the LENS facilities[C]//Proc of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition. 2000: 3604. [12] 黎作武. NNLD算法在高超声速气动热计算中的确认与验证[C]//第七届全国流体力学学术会议论文摘要集. 2012: 126. [13] 张涵信. 关于 CFD 高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1): 1–4. doi: 10.7638/kqdlxxb-2015.0211ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1): 1–4. doi: 10.7638/kqdlxxb-2015.0211 [14] 姜振华, 阎超. 高超声速热流高精度数值模拟方法[J]. 北京航空航天大学学报, 2011, 37(12): 1529–1533. doi: 10.13700/j.bh.1001-5965.2011.12.002JIANG Z H, YAN C. High order accurate methods in numerical simulation of hypersonic heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1529–1533. doi: 10.13700/j.bh.1001-5965.2011.12.002 [15] HOLDEN M S. Ground test measurements of jet interaction effects on AIT interceptors at fully duplicated flight conditions[C]//Proc of the 8th DOD Electromagnetic Windows Symposium. 2000. [16] 徐大军, 蔡国飙, 乐川. 吸气式高超声速飞行器气动热试验研究[J]. 宇航学报, 2006, 27(5): 1004–1009,1095. doi: 10.3321/j.issn:1000-1328.2006.05.037XU D J, CAI G B, YUE C. Aeroheating experiment for airbreathing hypersonic vehicle[J]. Journal of Astronautics, 2006, 27(5): 1004–1009,1095. doi: 10.3321/j.issn:1000-1328.2006.05.037 [17] 陈坚强. 国家数值风洞(NNW)工程关键技术进展[J]. 中国科学:技术科学, 2021, 51(11): 1326–1347.Chen J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica: Technologica, 2021, 51(11): 1326–1347. [18] YAMAMOTO Y. Numerical and experimental aerothermo-dynamics of strong hypersonic shock-shock interactions[C]//Proc of the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2002. doi: 10.2514/6.2002-2891 [19] 贾居红. 临近空间高超声速气动热数值模拟研究[D]. 北京: 北京理工大学, 2016.JIA J H. Numerical study on hypersonic aerothermodynamic of near-space flight vehicle[D]. Beijing: Beijing Institute of Technology, 2016. [20] 曾磊. 测热试验数据后处理方法及误差机理分析[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2012.ZENG L. Study on data processing method and error mechanism analysis of heat flux measurement in wind tunnel[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School. 2012. [21] 朱广生, 聂春生, 曹占伟, 等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学, 2019, 33(2): 1–10. doi: 10.11729/syltlx20180137ZHU G S, NIE C S, CAO Z W, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1–10. doi: 10.11729/syltlx20180137 [22] 钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185 [23] MAVRIPLIS D J. Progress in CFD discretizations, algorithms and solvers for aerodynamic flows[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-2944 -