1.2 m large-field focusing schlieren technique
-
摘要: 受大尺寸光学元件材料和加工工艺限制,常规“Z”型结构纹影技术的测试视场通常小于1 m。为满足某风洞设备大尺寸模型流场显示需要,提出利用聚焦纹影技术实现1.2 m测试视场的流场显示,根据成像原理,以面阵光源取代了大尺寸菲涅耳透镜。在解决大尺寸光源拼接、大口径聚焦透镜、高清成像屏等关键技术的基础上,建立了2套测试视场1.2 m × 1.2 m的聚焦纹影系统,在风洞中获得了灵敏度较高的超高速流场纹影图像。通过更大尺寸的光源拼接,有望实现更大视场的流场显示。Abstract: In the conventional “Z” structure schlieren technique, due to the limitation of large-size optical element materials and processing technology, the size of the test field is usually less than 1 meter. In order to show the flow field of a large-scale model in a wind tunnel, the focusing schlieren technique is proposed to show the flow field in the 1.2 m test area. According to the imaging principle, the large size Fresnel lens are replaced by a matrix light source. After solving the key technologies such as the engineering design of large-size light source splicing, the development of large-diameter focusing lens and the production of high-definition imaging screen, two sets of focusing schlieren systems with the test field of view of 1.2 m × 1.2 m were established, and the schlieren images of the hypervelocity flow field with high sensitivity were obtained in the wind tunnel. The flow visualization with larger field is expected to be realized through the splicing of larger size light sources.
-
Key words:
- focusing schlieren /
- flow visualization /
- schlieren /
- large field /
- LED light source
-
表 1 大视场聚焦纹影系统参数设计指标
Table 1. Parameter design index of large-field focusing schlieren
参数 数值 参数 数值 L 21.3 m λ 0.5 μm l 12.8 m εmin 7.05 arcsec f 2.29 m DS 35.8 mm A 350 mm DNS 146.3 mm b' 17.4 mm w 0.487 mm a 0.35 mm T 1.22 m × 1.22 m -
[1] 中国人民解放军总装备部军事训练教材编辑工作委员会. 流动显示技术[M]. 北京: 国防工业出版社, 2002. [2] WEINSTEIN L M. An improved large-field focusing schlieren system[C]//Proc of the 29th Aerospace Sciences Meeting. 1991: 567. doi: 10.2514/6.1991-567 [3] 徐翔, 谢爱民, 吕治国, 等. 聚焦纹影显示技术在激波风洞的初步应用[J]. 实验流体力学, 2009, 23(3): 75–79. doi: 10.3969/j.issn.1672-9897.2009.03.016XU X, XIE A M, LÜ Z G, et al. Application of focusing schlieren visualization system in shock tunnel experiment[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 75–79. doi: 10.3969/j.issn.1672-9897.2009.03.016 [4] COOK S P, CHOKANI N. Quantitative results from the focusing schlieren technique[C]//Proc of the 31st Aerospace Sciences Meeting. 1993: 630. DOI: 10.2514/6.1993-630 [5] KOUCHI T, GOYNE C, ROCKWELL R, et al. Focusing-schlieren visualization in direct-connect dual-mode scramjet[C]//Proc of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. 2012: 5834. doi: 10.2514/6.2012-5834 [6] GEERTS J S, YU K H. Application of focusing schlieren deflectometry to an isolator shock train[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 1486. DOI: 10.2514/6.2015-1486 [7] BROOKER B T, DeSIO C V, FEW A, et al. Design and testing of a sharp focusing schlieren system[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014. doi: 10.2514/6.2014-0548 [8] KASHITANI M, YAMAGUCHI Y, KITANO H. Preliminary study for quantitative measurement of flow fields by focusing schlieren method[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 983. doi: 10.2514/6.2011-983 [9] 黄思源, 谢爱民, 白菡尘. 双截面聚焦纹影技术应用研究[J]. 实验流体力学, 2011, 25(6): 92–96. doi: 10.3969/j.issn.1672-9897.2011.06.018HUANG S Y, XIE A M, BAI H C. Application of dual-section focusing schlieren visualization system[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 92–96. doi: 10.3969/j.issn.1672-9897.2011.06.018 [10] 谢爱民, 黄洁, 徐翔, 等. 激波风洞流场密度测量的聚焦纹影技术[J]. 实验流体力学, 2013, 27(2): 82–86. doi: 10.3969/j.issn.1672-9897.2013.02.016XIE A M, HUANG J, XU X, et al. Focusing schlieren technique applied to measure the flow density in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 82–86. doi: 10.3969/j.issn.1672-9897.2013.02.016 [11] 岳茂雄, 王如琴, 姚向红, 等. 高速聚焦纹影改进及应用[J]. 实验流体力学, 2013, 27(5): 88–93. doi: 10.3969/j.issn.1672-9897.2013.05.017YUE M X, WANG R Q, YAO X H, et al. Improved high-speed focusing schlieren system and its application[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 88–93. doi: 10.3969/j.issn.1672-9897.2013.05.017 [12] 黄训铭, 谢爱民, 郑蕾, 等. 聚集纹影图像密度场处理技术[J]. 四川兵工学报, 2015, 36(6): 77–81. doi: 10.11809/scbgxb2015.06.02HUANG X M, XIE A M, ZHENG L, et al. Technique research of focusing schlieren images processing for getting flow density[J]. Journal of Sichuan Ordnance, 2015, 36(6): 77–81. doi: 10.11809/scbgxb2015.06.02 [13] 陈磊, 朱涛, 章起华, 等. 大型彩色纹影系统像面均匀性分析[J]. 光子学报, 2016, 45(6): 99–107. doi: 10.3788/gzxb20164506.0611002CHEN L, ZHU T, ZHANG Q H, et al. Analysis on imaging uniformity of a color schlieren photographer[J]. Acta Photonica Sinica, 2016, 45(6): 99–107. doi: 10.3788/gzxb20164506.0611002 [14] 张红朝, 赵玉新, 杨涛. 基于BOS的气动光学畸变测量与波前重构[J]. 空气动力学学报, 2010, 28(5): 609–612. doi: 10.3969/j.issn.0258-1825.2010.05.021ZHANG H C, ZHAO Y X, YANG T. Study of aero-optical aberration measuring method based on BOS[J]. Acta Aerodynamica Sinica, 2010, 28(5): 609–612. doi: 10.3969/j.issn.0258-1825.2010.05.021 [15] 徐惊雷. PIV技术在超及高超声速流场测量中的研究进展[J]. 力学进展, 2012, 42(1): 81–90. doi: 10.6052/1000-0992-2012-1-lxjzJ2010-126XU J L. The development of the piv experimental study of the super/hypersoinc flowfield[J]. Advances in Mechanics, 2012, 42(1): 81–90. doi: 10.6052/1000-0992-2012-1-lxjzJ2010-126 [16] 黄辉, 熊健, 刘祥, 等. 基于温敏漆的边界层转捩测量技术研究[J]. 实验流体力学, 2019, 33(2): 79–84. doi: 10.11729/syltlx20180144HUANG H, XIONG J, LIU X, et al. Study of the boundary layer transition detection technique based on TSP[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 79–84. doi: 10.11729/syltlx20180144 [17] 林敬周, 解福田, 钟俊, 等. 高超声速风洞压敏漆试验技术[J]. 航空学报, 2017, 38(7): 120890. doi: 10.7527/S1000-6893.2017.120890LIN J Z, XIE F T, ZHONG J, et al. Pressure sensitive paint test technique in hypersonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 120890. doi: 10.7527/S1000-6893.2017.120890 [18] 谢爱民, 部绍清, 罗锦阳. 基于光源拼接的大视场聚焦纹影技术初步研究[J]. 实验流体力学, 2018, 32(6): 68–73. doi: 10.11729/syltlx20180012XIE A M, BU S Q, LUO J Y. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68–73. doi: 10.11729/syltlx20180012 -