Experimental study on the effect of microscale flow on nanoparticle diffusion in polymer solutions
-
摘要: 生理介质中的纳米粒子扩散在生命演化、信息传递、药物输运等过程中至关重要。黏液、组织液、细胞质等生理介质不仅具有复杂多孔特性,还往往表现出生命活动相关的微尺度流动。流动与扩散的相互影响异常复杂,且受到生理介质的多孔特性影响。实验利用微流控技术构建高分子溶液微尺度流动环境,采用粒子追踪技术测量纳米粒子的运动,基于统计特征量表征纳米粒子的运动特性,分析微尺度流动对纳米粒子扩散的影响。结果显示,微尺度流动对流动方向和垂直于流动方向上纳米粒子扩散均产生影响;流动方向上纳米粒子扩散的受限程度减弱,呈现次扩散、布朗扩散到超扩散多阶段特征;垂直于流动方向上纳米粒子的扩散呈现近似布朗特征,但扩散系数相较于静态情形有明显提高。分析表明,高分子溶液中微尺度流动对纳米颗粒扩散的影响主要源于高分子网络结构及其动力学的改变。研究结果可为解读生理介质中纳米颗粒输运机制及纳米药物设计与输运增强应用有一定参考。Abstract: The diffusion of nanoparticles in physiological media is very important in the process of life evolution, information transmission, and drug delivery. Physiological media such as mucus, tissue fluid, and cytoplasm not only have complex porous properties, but also often exhibit microscale flows related to life activities. The interaction between flow and diffusion is extremely complex, and is affected by the porous properties of physiological media. In the experiment, the microfluidic technology is used to construct a microscale flow environment of polymer solution, the particle tracking technology is employed to measure the movement of nanoparticles, the movement characteristics of nanoparticles are then characterized based on statistical characteristics, and the effects of the microscale flow on nanoparticle diffusion are analyzed. The results show that the microscale flow has an effect on the diffusion of nanoparticles in the direction of the flow and the direction of vertical flow; the restricted degree of nanoparticle diffusion is weakened in the flow direction, showing the multi-stage characteristics of sub-diffusion, Brownian diffusion to super-diffusion; the diffusion of nanoparticles shows an approximate Brownian characteristic in the direction of vertical flow, but the diffusion coefficient is significantly higher than that of the static case. The analysis reveals that the effect of microscale flow on the nanoparticles diffusion in polymer solution is mainly due to the change of the polymer network structure and dynamics. The research results can provide a certain reference for the interpretation of the transport mechanism of nanoparticles in physiological media, and the design and transport enhancement of nano-drugs.
-
Key words:
- Complex fluids /
- Microscale flow /
- Movement of nanoparticles /
- Diffusion /
- Particle tracking
-
表 1 实验中流速与Pe的对应关系
Table 1. Corresponding relationship between flow velocity and Pe in experiment
流速v/(μm·s−1) Pe 1 1.9 ± 0.12 0.39 2 4.9 ± 0.17 1.08 3 1.8 ± 0.07 3.69 -
[1] 夏懿. 复杂流体流动与传热及内含颗粒运动特性的研究[D]. 杭州: 浙江大学, 2019.XIA Y. Research on the flow and heat transfer characteristics of complex fluid and the motion behavior of suspended particles[D]. Hangzhou: Zhejiang University, 2019. [2] ZHANG Y J, DUDKO O K. First-passage processes in the genome[J]. Annual Review of Biophysics, 2016, 45: 117–134. doi: 10.1146/annurev-biophys-062215-010925 [3] KOVTUN O, SAKRIKAR D, TOMLINSON I D, et al. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant[J]. ACS Chemical Neuroscience, 2015, 6(4): 526–534. doi: 10.1021/cn500202c [4] LANE L A, QIAN X M, SMITH A M, et al. Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo[J]. Annual Review of Physical Chemistry, 2015, 66: 521–547. doi: 10.1146/annurev-physchem-040513-103718 [5] CHAUHAN V P, STYLIANOPOULOS T, BOUCHER Y, et al. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 281–298. doi: 10.1146/annurev-chembioeng-061010-114300 [6] WONG I Y, GARDEL M L, REICHMAN D R, et al. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks[J]. Physical Review Letters, 2004, 92(17): 178101. doi: 10.1103/PhysRevLett.92.178101 [7] HÖFLING F, FRANOSCH T. Anomalous transport in the crowded world of biological cells[J]. Reports on Progress in Physics Physical Society (Great Britain), 2013, 76(4): 046602. doi: 10.1088/0034-4885/76/4/046602 [8] MOROZOV A. From chaos to order in active fluids[J]. Science, 2017, 355(6331): 1262–1263. doi: 10.1126/science.aam8998 [9] LIN C P, SCHUSTER M, GUIMARAES S C, et al. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells[J]. Nature Communications, 2016, 7: 11814. doi: 10.1038/ncomms11814 [10] YOUNG E W K, BEEBE D J. Fundamentals of microfluidic cell culture in controlled microenvironments[J]. Chemical Society Reviews, 2010, 39(3): 1036–1048. doi: 10.1039/b909900j [11] SMITH J H, HUMPHREY J A C. Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue[J]. Microvascular Research, 2007, 73(1): 58–73. doi: 10.1016/j.mvr.2006.07.001 [12] FANG Z C, DING Y, ZHANG Z C, et al. Digital microfluidic meter-on-chip[J]. Lab on a Chip, 2020, 20(4): 722–733. doi: 10.1039/c9lc00989b [13] GROO A C, LAGARCE F. Mucus models to evaluate nanomedicines for diffusion[J]. Drug Discovery Today, 2014, 19(8): 1097–1108. doi: 10.1016/j.drudis.2014.01.011 [14] DIX J A, VERKMAN A S. Crowding effects on diffusion in solutions and cells[J]. Annual Review of Biophysics, 2008, 37: 247–263. doi: 10.1146/annurev.biophys.37.032807.125824 [15] BROCHARD WYART F, DE GENNES P G. Viscosity at small scales in polymer melts[J]. The European Physical Journal E, 2000, 1(1): 93–97. doi: 10.1007/s101890050011 [16] CHENG X, XU X L, RICE S A, et al. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 63–67. doi: 10.1073/pnas.1118197108 [17] KHAREL P, ROGNON P. Vortices enhance diffusion in dense granular flows[J]. Physical Review Letters, 2017, 119(17): 178001. doi: 10.1103/physrevlett.119.178001 [18] CAI Y, SCHWARTZ D K. Mapping the functional tortuosity and spatiotemporal heterogeneity of porous polymer membranes with super-resolution nanoparticle tracking[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 43258–43266. doi: 10.1021/acsami.7b15335 [19] HE K, BABAYE KHORASANI F, RETTERER S T, et al. Diffusive dynamics of nanoparticles in arrays of nanoposts[J]. ACS Nano, 2013, 7(6): 5122–5130. doi: 10.1021/nn4007303 [20] KEGEL W K, VAN B A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions[J]. Science, 2000, 287(5451): 290–293. doi: 10.1126/science.287.5451.290 [21] 王九令. 复杂生物介质中纳米药物载体输运的若干力学问题[D]. 北京: 中国科学院大学, 2017. [22] MOON B U, ABBASI N, JONES S G, et al. Water-in-water droplets by passive microfluidic flow focusing[J]. Analytical Chemistry, 2016, 88(7): 3982–3989. doi: 10.1021/acs.analchem.6b00225 [23] 周思佳, 王昊利, 包福兵. 基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性[J]. 实验流体力学, 2020, 34(2): 89–98. doi: 10.11729/syltlx20190143ZHOU S J, WANG H L, BAO F B. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89–98. doi: 10.11729/syltlx20190143 [24] 黄艺荣, 郑旭, 胡国庆. 纳米颗粒在复杂生物介质中的反常扩散[J]. 气体物理, 2018, 3(4): 1–12. doi: 10.19527/j.cnki.2096-1642.2018.04.001HUANG Y R, ZHENG X, HU G Q. Anomalous diffusion of nanoparticles in complex biological media[J]. Physics of Gases, 2018, 3(4): 1–12. doi: 10.19527/j.cnki.2096-1642.2018.04.001 [25] SOUZY M, YIN X L, VILLERMAUX E, et al. Super-diffusion in sheared suspensions[J]. Physics of Fluids, 2015, 27(4): 041705. doi: 10.1063/1.4918613[LinkOut [26] ORIHARA H, TAKIKAWA Y. Brownian motion in shear flow: direct observation of anomalous diffusion[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(6 Pt 1): 061120. doi: 10.1103/PhysRevE.84.061120 [27] RAIKHER Y L, RUSAKOV V V, PERZYNSKI R. Brownian motion in a viscoelastic medium modelled by a Jeffreys fluid[J]. Soft Matter, 2013, 9(45): 10857. doi: 10.1039/c3sm51956b [28] SARMIENTO-GOMEZ E, SANTAMARÍA-HOLEK I, CASTILLO R. Mean-square displacement of particles in slightly interconnected polymer networks[J]. The Journal of Physical Chemistry B, 2014, 118(4): 1146–1158. doi: 10.1021/jp4105344 [29] ZIA R N. Active and passive microrheology: theory and simulation[J]. Annual Review of Fluid Mechanics, 2018, 50: 371–405. doi: 10.1146/annurev-fluid-122316-044514 [30] OULD-KADDOUR F, LEVESQUE D. Molecular-dynamics investigation of tracer diffusion in a simple liquid: test of the Stokes-Einstein law[J]. Physical Review E, 2000, 63: 011205. doi: 10.1103/physreve.63.011205 [31] COGLITORE D, EDWARDSON S P, MACKO P, et al. Transition from fractional to classical Stokes-Einstein behaviour in simple fluids[J]. Royal Society Open Science, 2017, 4(12): 170507. doi: 10.1098/rsos.170507 [32] KUBO R. The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29(1): 255–284. doi: 10.1088/0034-4885/29/1/306 [33] TSALLIS C, LEVY S V, SOUZA A M, et al. Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature[J]. Physical Review Letters, 1995, 75(20): 3589–3593. doi: 10.1103/physrevlett.75.3589 [34] DANIELSEN S P O, BEECH H K, WANG S, et al. Molecular characterization of polymer networks[J]. Chemical Reviews, 2021, 121(8): 5042–5092. doi: 10.1021/acs.chemrev.0c01304 [35] METZLER R, JEON J H, CHERSTVY A G, et al. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[J]. Physical Chemistry Chemical Physics:PCCP, 2014, 16(44): 24128–24164. doi: 10.1039/c4cp03465a [36] GHOSH S K, CHERSTVY A G, METZLER R. Non-universal tracer diffusion in crowded media of non-inert obstacles[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(3): 1847–1858. doi: 10.1039/c4cp03599b -