Crossing shock waves/transitional boundary layers interactions in the double vertical wedges configuration
-
摘要: 针对超声速双垂直楔构型产生的交叉激波与转捩边界层干扰现象,结合风洞试验与数值模拟进行了深入研究。试验在中国空气动力研究与发展中心Φ 600 mm脉冲燃烧风洞中开展,来流马赫数3.0,单位雷诺数2.1×106 m−1,获得了流场纹影、壁面压力和壁面热流。结果表明:受交叉激波逆压梯度作用,层流边界层在激波交汇附近产生分离,并在干扰区迅速转捩;在上游安装斜坡型涡流发生器或粗糙带,诱导边界层在干扰前转捩为湍流,分离区被有效抑制,干扰区热流明显下降(热流峰值下降超过25%)。数值模拟和风洞试验得到的激波结构、壁面压力吻合良好,但壁面热流计算值明显大于试验值。对比转捩模型和湍流模型计算结果发现:明显偏高的湍流黏性系数是RANS方法在非分离区过高预测干扰区热流的主要原因。Abstract: Study on crossing shock waves/transitional boundary layer interaction in the double vertical wedges configuration was carried out using wind tunnel tests and numerical calculations. The wind tunnel tests were carried out at Φ 600 mm pulse combustion wind tunnel. The Mach number of the free stream condition is 3.0, and the unit Reynolds number is 2.1×106 m−1. The schlieren images, wall pressure and wall heat fluxes were obtained during the tests. The results show that because of the adverse pressure gradient caused by the crossing shock waves, the separation of the laminar boundary layer was captured near the shock waves intersection point. And the transition from laminar to turbulent occurred rapidly in the interaction region. After installation of vertex generator devices or roughness devices, the boundary layer transition position moved to the upstream of the interaction region, the separation was effectively inhibited. And the heat fluxes in the interaction region declined obviously. The peak value of heat fluxe was reduced by more than 25%. The shock wave structures and wall pressure distributions obtained from tests and simulations agreed well, while the prediction heat fluxes were much larger than the test results. The comparison between the calculated results of the transition model and the turbulence model shows that the obviously larger turbulence viscosity is the main reason why RANS methods over-predict the heat fluxes in the unseparated interaction region.
-
Key words:
- crossing shock waves /
- shock waves/boundary layer interaction /
- turbulence /
- transition
-
表 1 试验来流条件
Table 1. Freestream condition of the test
马赫数 总温
Tt/K总压
pt/MPa单位雷诺数
Re/(106 m−1)来流组分摩尔比
(O2∶N2∶H2O)比热比 3.0 1350 0.335 2.1 0.21∶0.56∶0.23 1.34 表 2 x>0区域x、y、z方向上网格数
Table 2. Grid numbers in x, y, z directions in the x>0 area
网格 nx ny nz 粗网格(rough) 141 81 71 基准网格(base) 201 121 101 密网格(fine) 401 181 151 -
[1] 吴瀚,王建宏,黄伟,等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报,2021,42(6):025371. doi: 10.7527/S1000-6893.2021.25371WU H,WANG J H,HUANG W,et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6):025371. doi: 10.7527/S1000-6893.2021.25371 [2] 张悦,谭慧俊,王子运,等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术,2020,41(2):241-259. doi: 10.13675/j.cnki.tjjs.190376ZHANG Y,TAN H J,WANG Z Y,et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology,2020,41(2):241-259. doi: 10.13675/j.cnki.tjjs.190376 [3] GARRISON T J, SETTLES G S. Flowfield visualization of crossing shock-wave/boundary-layer interactions[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992: 750. doi: 10.2514/6.1992-750 [4] THIVET F. Lessons learned from RANS simulations of shock-wave/boundary-layer interactions[R]. AIAA 2002-0583. doi: 10.2514/6.2002-583 [5] 赵慧勇,雷波,乐嘉陵. 非对称交叉激波和湍流边界层相互作用的数值研究[J]. 航空动力学报,2009,24(10):2183-2188. doi: 10.13224/j.cnki.jasp.2009.10.009ZHAO H Y,LEI B,LE J L. Numerical investigation of interaction between asymmetric crossing shock waves/turbulence boundary layer[J]. Journal of Aerospace Power,2009,24(10):2183-2188. doi: 10.13224/j.cnki.jasp.2009.10.009 [6] ZHELTOVODOV A A,MAKSIMOV A I,SHEVCHENKO A. Topology of three-dimensional separation under the conditions of symmetric interaction of crossing shocks and expansion waves with turbulent boundary layer[J]. Thermophysics and Aeromechanics,1998,5(3):293-312. [7] ZHELTOVODOV A A,MAKSIMOV A I,GAITONDE D,et al. Experimental and numerical study of symmetric interaction of crossing shocks and expansion waves with a turbulent boundary layer[J]. Thermophysics and Aeromechanics,2016,23(2):155-171. [8] ZHELTOVODOV A A, MAKSIMOV A I. Hypersonic crossing shock-waves/turbulent boundary layer interaction[R]. ADA363672. 1999. [9] ZHELTOVODOV A A, MAKSIMOV A I, SCHÜLEIN E, et al. verification of crossing-shock wave/boundary layer interaction computations with the k-ε turbulence model[C]// Proc of the 10th International Conference on Methods of Aerophysical Research. 2000: 231-241. [10] (英)霍格尔·巴宾斯基, 约翰·K. 哈维. 激波边界层干扰[M]. 白菡尘, 译. 北京: 国防工业出版社, 2015.BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. translated by BAI H C. Beijing: National Defense Industry Press, 2015. [11] KNIGHT D,MORTAZAVI M. Hypersonic shock wave transitional boundary layer interactions - A review[J]. Acta Astronautica,2018,151:296-317. doi: 10.1016/j.actaastro.2018.06.019 [12] TOKURA Y, MAEKAWA H. DNS of a spatially evolving transitional/turbulent boundary layer with impinging shock wave[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 729. doi: 10.2514/6.2011-729 [13] DAVIDSON T S C, BABINSKY H. Transition location effects on normal shock wave: boundary layer interactions[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 1975. doi: 10.2514/6.2015-1975 [14] POLIVANOV P A, SIDORENKO A A, MASLOV A A, et al. Transition effect on shock wave/boundary layer interac-tion at M=1.47[C]// Proc of the 53rd AIAA Aerospace Sciences Meeting. 1974. [15] THREADGILL J A, LITTLE J C, WERNZ S H. Transitional shock wave boundary layer interactions on a compression ramp at Mach 4[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0343. doi: 10.2514/6.2019-0343 [16] 武宇. 超声速压缩拐角流动机理及其流动分离控制的试验研究[D]. 长沙: 国防科学技术大学, 2015.WU Y. Experimental investigation of supersonic flow over A compression ramp and its flow control on separation[D]. Changsha: National University of Defense Technology, 2015. [17] 武宇,易仕和,陈植,等. 超声速层流/湍流压缩拐角流动结构的实验研究[J]. 物理学报,2013,62(18):316-327. doi: 10.7498/aps.62.184702WU Y,YI S H,CHEN Z,et al. Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp[J]. Acta Physica Sinica,2013,62(18):316-327. doi: 10.7498/aps.62.184702 [18] 童福林,唐志共,李新亮,等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报,2016,37(12):3588-3604. doi: 10.7527/S1000-6893.2016.0096TONG F L,TANG Z G,LI X L,et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2016,37(12):3588-3604. doi: 10.7527/S1000-6893.2016.0096 [19] 童福林,李新亮,唐志共,等. 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报,2016,37(10):2909-2921. doi: 10.7527/S1000-6893.2015.0355TONG F L,LI X L,TANG Z G,et al. Transition effect on separation bubble of shock wave/boundary layer interaction in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2016,37(10):2909-2921. doi: 10.7527/S1000-6893.2015.0355 [20] 童福林,李新亮,段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报,2017,38(12):121376. doi: 10.7527/S1000-6893.2017.121376TONG F L,LI X L,DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica,2017,38(12):121376. doi: 10.7527/S1000-6893.2017.121376 [21] 童福林,李新亮,唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报,2017,49(1):93-104. doi: 10.6052/0459-1879-16-224TONG F L,LI X L,TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):93-104. doi: 10.6052/0459-1879-16-224 [22] 解少飞,宫建,高波,等. 边界层转捩与压缩拐角分离流动的非定常作用[J]. 空气动力学学报,2017,35(1):129-135. doi: 10.7638/kqdlxxb-2015.0104XIE S F,GONG J,GAO B,et al. Unsteady interaction between transitional boundary layer and flow separation in compression corner[J]. Acta Aerodynamica Sinica,2017,35(1):129-135. doi: 10.7638/kqdlxxb-2015.0104 [23] LE J L, LIU W, HE W, et al. Pulse combustion facility and its preliminary application in scramjet research[C]//Proc of the 11th International Conference on Methods of Aerophysical Research. 2002. [24] 贺元元,贺伟,张小庆,等. 燃烧加热脉冲风洞气动/推进一体化试验研究[J]. 推进技术,2017,38(8):1741-1746.HE Y Y,HE W,ZHANG X Q,et al. Aero-propulsion integration test in combustion heated impulse facility[J]. Journal of Propulsion Technology,2017,38(8):1741-1746. [25] 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013: 79-103. [26] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳: 中国空气动力研究与发展中心, 2005.ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center, 2005. [27] 易淼荣,赵慧勇,乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学,2018,32(4):1-11. doi: 10.11729/syltlx20180019YI M R,ZHAO H Y,LE J L. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):1-11. doi: 10.11729/syltlx20180019 [28] 韩亦宇. 高超声速进气道激波振荡的DES数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014.HAN Y Y. Detached eddy simulation(DES) of hypersonic inlet shock oscillation[D]. Mianyang: China Aerodynamics Research and Development Center, 2014. [29] 易淼荣,赵慧勇,乐嘉陵,等. 基于IDDES框架的γ-Reθ转捩模型[J]. 航空学报,2019,40(8):122726. doi: 10.7527/S1000-6893.2018.22726YI M R,ZHAO H Y,LE J L,et al. γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):122726. doi: 10.7527/S1000-6893.2018.22726 [30] 赵慧勇,雷波,乐嘉陵. 对称交叉激波和湍流边界层相互作用的数值研究[J]. 推进技术,2010,31(4):406-411. doi: 10.13675/j.cnki.tjjs.2010.04.011ZHAO H Y,LEI B,LE J L. Numerical investigation of interaction between symmetric crossing shock waves/turbulence boundary layer[J]. Journal of Propulsion Technology,2010,31(4):406-411. doi: 10.13675/j.cnki.tjjs.2010.04.011 [31] THIVET F, KNIGHT D D, ZHELTOVODOV A A, et al. Some insights in turbulence modeling for crossing-shock-wave/boundary-layer interactions[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000: 131. doi: 10.2514/6.2000-131 -