留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场对疏水表面铁磁流体液滴浸润性的影响及调控

欧阳奕 温明富 王娅萍 杜玥蒨 王誉乔 牛小东

欧阳奕, 温明富, 王娅萍, 等. 磁场对疏水表面铁磁流体液滴浸润性的影响及调控[J]. 实验流体力学. doi: 10.11729/syltlx20220086
引用本文: 欧阳奕, 温明富, 王娅萍, 等. 磁场对疏水表面铁磁流体液滴浸润性的影响及调控[J]. 实验流体力学. doi: 10.11729/syltlx20220086
OU Y Y, WEN M F, WANG Y P, et al. Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220086
Citation: OU Y Y, WEN M F, WANG Y P, et al. Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220086

磁场对疏水表面铁磁流体液滴浸润性的影响及调控

doi: 10.11729/syltlx20220086
基金项目: 国家自然科学基金(12172203)
详细信息
    作者简介:

    欧阳奕:(1998—),女,广东深圳人,硕士研究生,研究方向:磁流体实验。通信地址:广东省汕头市金平区鮀江街道大学路243号汕头大学(515063)。E-mail:20youyang@stu.edu.cn

    通讯作者:

    E-mail:mfwen@stu.edu.cn

  • 中图分类号: O361.3

Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface

  • 摘要: 利用铁磁流体液滴在磁场作用下的可控动态行为机制,实现微小部件甚至气泡等的定向输运,在微流控器件、抗结冰、滴状凝结及矿物浮选等领域都具有广泛的应用前景,但目前对于铁磁流体在超疏水表面的场辅助润湿行为机理、影响因素及调控方法等尚不明确。本文通过实验研究了外加磁场作用下水基铁磁流体在非磁疏水表面的润湿行为和液滴形态动态演变过程。在垂直方向磁场的激励下,通过控制磁感应强度及铁磁流体液滴体积,实验观测液滴的接触线直径和接触角变化。结果表明:在弱磁场作用下,铁磁流体液滴表观接触角由90°以上降至90°以下;在磁场作用下,铁磁流体液滴中的纳米磁性颗粒沿磁力线方向形成链状结构,液滴接触角发生变化。根据接触角、接触线直径、液滴高度和液滴体积对铁磁流体液滴润湿行为进行量化,采用标度分析方法建立磁场与接触角之间的理论预测关系。本文研究结果有助于理解磁场调控下铁磁流体在超疏水表面的可逆浸润性机制。
  • 图  1  疏水表面上铁磁流体液滴接触角等基础参数的实验测量装置

    Figure  1.  Schematic diagram of the experimental device for measuring the contact angle and other basic parameters of the ferrofluid droplets on a hydrophobic substrate

    图  2  永磁铁和疏水表面垂直距离与液滴中心磁感应强度的关系

    Figure  2.  Relationship between vertical distance from permanent magnet to hydrophobic base and magnetic induction intensity at droplet center

    图  3  铁磁流体液滴在强磁场作用下分离“子液滴”

    Figure  3.  Ferrofluid droplets separate "daughter droplet" under the action of strong magnetic field

    图  4  3种体积铁磁流体液滴的基础参数随液滴中心磁感应强度的变化

    Figure  4.  The variation of basic parameters of three kinds of fixed ferrofluid droplets with the magnetic induction intensity at the droplet center

    图  5  3种体积的铁磁流体液滴在磁感应强度增大过程中的阴影图

    Figure  5.  Shadow graphs of three volumes of ferrofluid droplets in the process of magnetic induction intensity increase

    图  6  铁磁流体液滴气–液–固三相交界点受力示意图

    Figure  6.  Schematic diagram of force on gas-liquid-solid three-phase tri-junction of ferrofluid droplet

    图  7  9 μL铁磁流体液滴的接触角随磁感应强度的变化

    Figure  7.  The change of contact angle and magnetic induction intensity of 9 μL ferrofluid droplet

    图  8  4种磁感应强度下铁磁流体液滴的接触角、接触线直径及高度随时间的变化

    Figure  8.  The contact angle, the diameter of the contact line and the droplet height change with time under four different magnetic induction intensities

    图  9  铁磁流体液滴的初始接触角和最终接触角随磁感应强度的变化

    Figure  9.  Change of the initial contact angle and the final contact angle of the droplet with the magnetic induction intensity

    图  10  4种磁感应强度下铁磁流体液滴的接触角、接触线直径及高度随时间的变化

    Figure  10.  The contact angle, contact line diameter and droplet height change with time under four different magnetic induction intensities

    图  11  铁磁流体液滴初始接触角和最终接触角随磁感应强度的变化

    Figure  11.  Change of the initial contact angle and final contact angle of the droplet with the magnetic induction intensity

    图  12  对数坐标下铁磁流体液滴接触角实验拟合和理论拟合

    Figure  12.  Experimental and theoretical fitting of ferrofluid droplet contact angle in logarithmic coordinates

    表  1  MFW铁磁流体的物理特性

    Table  1.   Physical characteristics of MFW magnetic fluid

    基液
    饱和磁化强度2 × 104 A/m
    密度1.18 × 103 kg/m3
    黏度(25℃)1 × 10−2 Pa·s
    载液饱和蒸气压(20℃)2.3 kPa
    起始磁化率0.6
    表面张力2.6 × 10−4 N/cm
    热导率0.59 W/(m·K)
    比热容4184 J/(kg·K)
    下载: 导出CSV

    表  2  KYN–100 PDMS薄膜的物理特性

    Table  2.   Physical properties of KYN–100 PDMS films

    硬度/(邵氏A)65
    拉伸强度6 Mpa
    撕裂强度20 kN/m
    透光率>95%
    适用温度范围−40~200 ℃
    介电强度12 kV/mm
    介电常数2.7 F/m
    体积电阻率1 × 1014 Ω·cm
    下载: 导出CSV
  • [1] NODA Y, MATSUI H, MINEMAWARI H, et al. Observation and simulation of microdroplet shapes on surface-energy-patterned substrates: contact line engineering for printed electronics[J]. Journal of Applied Physics, 2013, 114(4): 044905. doi: 10.1063/1.4816461
    [2] TAN S H, NGUYEN N T, YOBAS L, et al. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. Journal of Micromechanics and Microengineering, 2010, 20(4): 045004. doi: 10.1088/0960-1317/20/4/045004
    [3] 李德才. 磁性液体密封理论及应用[M]. 北京: 科学出版社, 2010.

    LI D C. Theory and application of magnetic seal[M]. Beijing: Science Press, 2010.
    [4] MAHENDRAN V, PHILIP J. Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials[J]. Applied Physics Letters, 2012, 100(7): 073104. doi: 10.1063/1.3684969
    [5] ZAIBUDEEN A W, PHILIP J. Magnetic nanofluid based non-enzymatic sensor for urea detection[J]. Sensors and Actuators B:Chemical, 2018, 255: 720–728. doi: 10.1016/j.snb.2017.08.065
    [6] PHILIP J, SHIMA P D, RAJ B. Nanofluid with tunable thermal properties[J]. Applied Physics Letters, 2008, 92(4): 043108. doi: 10.1063/1.2838304
    [7] YAMAGUCHI H. Energy transport in cooling device by magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 2017, 431: 229–236. doi: 10.1016/j.jmmm.2016.08.083
    [8] AZIZIAN R, DOROODCHI E, McKRELL T, et al. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 68: 94–109. doi: 10.1016/j.ijheatmasstransfer.2013.09.011
    [9] FADAEI F, SHAHROKHI M, DEHKORDI A M, et al. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2017, 429: 314–323. doi: 10.1016/j.jmmm.2017.01.046
    [10] RAJ K, MOSKOWITZ R. Commercial applications of ferrofluids[J]. Journal of Magnetism and Magnetic Materials, 1990, 85(1-3): 233–245. doi: 10.1016/0304-8853(90)90058-X
    [11] VOLTAIRAS P A, FOTIADIS D I, MICHALIS L K. Hydrodynamics of magnetic drug targeting[J]. Journal of Biomechanics, 2002, 35(6): 813–821. doi: 10.1016/S0021-9290(02)00034-9
    [12] GALLO J M, GUPTA P K, HUNG C T, ET AL. Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat[J]. Journal of Pharmaceutical Sciences, 1989, 78(3): 190–194. doi: 10.1002/jps.2600780303
    [13] SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Reports on Progress in Physics, 2011, 75(1): 016601.
    [14] SEMPREBON C, MISTURA G, ORLANDINI E, et al. Anisotropy of water droplets on single rectangular posts[J]. Langmuir, 2009, 25(10): 5619–5625. doi: 10.1021/la8041742
    [15] VARAGNOLO S, FERRARO D, FANTINEL P, et al. Stick-slip sliding of water drops on chemically heterogeneous surfaces[J]. Physical Review Letters, 2013, 111(6): 066101. doi: 10.1103/physrevlett.111.066101
    [16] VARAGNOLO S, SCHIOCCHET V, FERRARO D, et al. Tuning drop motion by chemical patterning of surfaces[J]. Langmuir, 2014, 30(9): 2401–2409. doi: 10.1021/la404502g
    [17] CHEN Y, HE B, LEE J H, et al. Anisotropy in the wetting of rough surfaces[J]. Journal of Colloid and Interface Science, 2005, 281(2): 458–464. doi: 10.1016/j.jcis.2004.07.038
    [18] GAU H, HERMINGHAUS S, LENZ P, et al. Liquid morphologies on structured surfaces: from microchannels to microchips[J]. Science, 1999, 283(5398): 46–49. doi: 10.1126/science.283.5398.46
    [19] YEO L Y, FRIEND J R. Surface acoustic wave microfluidics[J]. Annual Review of Fluid Mechanics, 2014, 46: 379–406. doi: 10.1146/annurev-fluid-010313-141418
    [20] BRUNET P, EGGERS J, DEEGAN R D. Vibration-induced climbing of drops[J]. Physical Review Letters, 2007, 99(14): 144501. doi: 10.1103/PhysRevLett.99.144501
    [21] NOBLIN X, KOFMAN R, CELESTINI F. Ratchetlike motion of a Shaken drop[J]. Physical Review Letters, 2009, 102(19): 194504. doi: 10.1103/physrevlett.102.194504
    [22] SARTORI P, QUAGLIATI D, VARAGNOLO S, et al. Drop motion induced by vertical vibrations[J]. New Journal of Physics, 2015, 17(11): 113017. doi: 10.1088/1367-2630/17/11/113017
    [23] PIROIRD K, TEXIER B D, CLANET C, et al. Reshaping and capturing Leidenfrost drops with a magnet[J]. Physics of Fluids, 2013, 25(3): 032108. doi: 10.1063/1.4796133
    [24] QUÉRÉ D. Leidenfrost dynamics[J]. Annual Review of Fluid Mechanics, 2013, 45: 197–215. doi: 10.1146/annurev-fluid-011212-140709
    [25] AFKHAMI S, RENARDY Y, RENARDY M, et al. Field-induced motion of ferrofluid droplets through immiscible viscous media[J]. Journal of Fluid Mechanics, 2008, 610: 363–380. doi: 10.1017/s0022112008002589
    [26] NGUYEN N T, ZHU G P, CHUA Y C, et al. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet[J]. Langmuir, 2010, 26(15): 12553–12559. doi: 10.1021/la101474e
    [27] TSAI S S H, GRIFFITHS I M, LI Z Z, et al. Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment[J]. Soft Matter, 2013, 9(35): 8600–8608. doi: 10.1039/C3SM51403J
    [28] ZHU G P, NGUYEN N T, RAMANUJAN R V, et al. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field[J]. Langmuir, 2011, 27(24): 14834–14841. doi: 10.1021/la203931q
    [29] SOUZA P J Jr, LIRA S H A, DE OLIVEIRA I N. Wetting dynamics of ferrofluids on substrates with different hydrophilicity behaviors[J]. Journal of Magnetism and Magnetic Materials, 2019, 483: 129–135. doi: 10.1016/j.jmmm.2019.03.069
    [30] BERIM G O, RUCKENSTEIN E. Nanodrop of an Ising magnetic fluid on a solid surface[J]. Langmuir, 2011, 27(14): 8753–8760. doi: 10.1021/la2011919
    [31] TENNETI S, SUBRAMANIAN S G, CHAKRABORTY M, et al. Magnetowetting of ferrofluidic thin liquid films[J]. Scientific Reports, 2017, 7: 44738. doi: 10.1038/srep44738
    [32] AHMED A, FLECK B A, WAGHMARE P R. Maximum spreading of a ferrofluid droplet under the effect of magnetic field[J]. Physics of Fluids, 2018, 30(7): 077102. doi: 10.1063/1.5032113
    [33] AHMED A, QURESHI A J, FLECK B A, et al. Effects of magnetic field on the spreading dynamics of an impinging ferrofluid droplet[J]. Journal of Colloid and Interface Science, 2018, 532: 309–320. doi: 10.1016/j.jcis.2018.07.110
    [34] BERTHIER J, SILBERZAN P. Microfluidics for biotechnology[M]. 2nd ed. Boston: Artech House, 2010
    [35] ZIMMELS Y. The Bernoulli equation for fluids in electromagnetic and interfacial systems[J]. Journal of Colloid and Interface Science, 1988, 125(2): 399–419. doi: 10.1016/0021-9797(88)90004-5
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  138
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2022-11-04
  • 录用日期:  2022-11-27
  • 网络出版日期:  2023-03-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日