Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow
-
摘要: 针对超声速来流湍流度(Tu)对转捩影响风洞试验数据缺乏的现状,开展了马赫数(Ma)3条件下不同来流湍流度对平板模型边界层转捩影响的试验研究。在中国空气动力研究与发展中心0.3 m×0.3 m跨超声速风洞(FL-24y)上,通过改变风洞稳定段内稳流参数,形成了来流湍流度在0.82%-1.63%范围内的变化。利用干涉瑞利散射技术测量了来流湍流度,利用红外热图技术测量了平板模型表面温度分布,得到了来流湍流度对转捩起始位置(Fonset)和转捩结束位置(Fend)影响的试验数据。根据试验来流条件,采用γ-Reθ转捩模型仿真了平板模型边界层转捩,并将仿真结果与风洞试验数据做了对比。结果表明:平板模型转捩试验测量结果和数值计算结果符合较好,两种方法得到的转捩起始位置相对误差≤2%,转捩结束位置相对误差≤5%。该试验结果可以为研究超声速来流湍流度对边界层转捩的影响规律提供数据支撑。Abstract: There is still a shortage of the experimental research of boundary layer transition in compressible flows nowadays due to the difficulty in measuring the turbulence intensity. Aiming at studying the influence of the turbulence intensity on supersonic boundary layer transition, a plate model is tested in a blow-down facility (FL-24y of CARDC) at Mach 3. The turbulence intensity of the flow is changed by adjusting the arrangements in the stabilization section of the wind tunnel, which covers a range from 0.82% to 1.63%. The turbulence intensity is measured by interferometric Rayleigh scattering, while the boundary layer transition is derived by infrared thermography. The CFD simulation of the plate model transition is conducted based on the γ-Reθ transition model. The results show that the transition onset position (Fonset) and transition end position (Flength) obtained by the experiment and the simulation agree well, with the maximum relative error coefficient of 2% in Fonset and of 5% in Flength, which provides support to gain a deeper insight into the boundary layer transition mechanism in supersonic flows.
-
表 1 试验参数
Table 1. Flow conditions
工况 烧结丝网数/层 阻尼网数/层 Pt/kPa Tt/K 1 2 5 470 293 2 2 3 471 293 3 1 5 470 293 4 1 3 470 293 5 0 5 471 293 表 2 试验结果与数值计算结果对比
Table 2. Comparison between experimental result and CFD simulation
Tu/% Fonset/mm Fend/mm 试验值 计算值 e 试验值 计算值 e 0.82 21.29 20.87 −1.97% 43.88 43.34 −1.23% 1.14 20.54 20.26 −1.36% 41.93 42.52 1.41% 1.63 17.92 18.27 1.95% 39.83 41.67 4.62% 注:相对误差e=(计算值−试验值)/试验值×100% -
[1] 张扣立,常雨,孔荣宗,等. 温敏漆技术及其在边界层转捩测量中的应用[J]. 宇航学报,2013,34(6):860-865.ZHANG K L,CHANG Y,KONG R Z,et al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics,2013,34(6):860-865. [2] 刘向宏,赖光伟,吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报,2018,36(2):196-212. doi: 10.7638/kqdlxxb-2018.0017LIU X H,LAI G W,WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica,2018,36(2):196-212. doi: 10.7638/kqdlxxb-2018.0017 [3] 陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030CHEN J Q,TU G H,ZHANG Y F,et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030 [4] LANGTRY R B,MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal,2009,47(12):2894-2906. doi: 10.2514/1.42362 [5] ABU-GHANNAM B J,SHAW R. Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science,1980,22(5):213-228. doi: 10.1243/jmes_jour_1980_022_043_02 [6] LANGTRY R B, SENUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects[R]. AIAA-2015-2474. doi: 10.2514/6.2015-2474 [7] 袁湘江,沙心国,时晓天,等. 高超声速流动中噪声与湍流度的关系[J]. 航空学报,2020,41(11):123791.YUAN X J,SHA X G,SHI X T,et al. Noise-turbulence relationship in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):123791. [8] SCHNEIDER S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets,1999,36(1):8-20. doi: 10.2514/2.3428 [9] 盛森芝, 徐月亭, 袁辉靖. 热线热膜流速计[M]. 北京: 中国科学技术出版社, 2003.SHENG S Z. Hot-wire hot-film anemometer[M]. Beijing: China Science and Technology Press, 2003. [10] 王彦植,陈方,刘洪,等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学,2018,32(3):94-99. doi: 10.11729/syltlx20170160WANG Y Z,CHEN F,LIU H,et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):94-99. doi: 10.11729/syltlx20170160 [11] SEASHOLTZ R G,BUGGELE A E,REEDER M F. Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer[J]. Optics and Lasers in Engineering,1997,27(6):543-570. doi: 10.1016/S0143-8166(96)00063-2 [12] FAGAN A F, ZAMAN K Q, ELAM K. Two-point dynamic Rayleigh scattering measurements in a free jet[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-3109 [13] CHEN L,YANG F R,SU T,et al. High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering[J]. Chinese Physics B,2017,26(2):345-348. [14] 杨富荣,陈力,闫博,等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学,2018,32(3):82-86. doi: 10.11729/syltlx20170103YANG F R,CHEN L,YAN B,et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):82-86. doi: 10.11729/syltlx20170103 [15] 陈爱国,陈力,李志辉,等. 瑞利散射测速技术在高超声速流场中应用研究[J]. 实验流体力学,2017,31(6):51-55. doi: 10.11729/syltlx20170020CHEN A G,CHEN L,LI Z H,et al. Research on application of Rayleigh scattering velocity measurement in hypersonic low density wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2017,31(6):51-55. doi: 10.11729/syltlx20170020 [16] ZUCCHER S,SARIC W S. Infrared thermography investigations in transitional supersonic boundary layers[J]. Experiments in Fluids,2008,44(1):145-157. doi: 10.1007/s00348-007-0384-1 [17] MERTENS C,WOLF C C,GARDNER A D,et al. Advanced infrared thermography data analysis for unsteady boundary layer transition detection[J]. Measurement Science and Technology,2020,31(1):015301. doi: 10.1088/1361-6501/ab3ae2 [18] 耿子海,何显中,王勋年,等. 红外成像非接触转捩测量低速风洞试验技术研究[J]. 实验流体力学,2010,24(6):77-82. doi: 10.3969/j.issn.1672-9897.2010.06.017GENG Z H,HE X Z,WANG X N,et al. Non-intrusive test technique investigation of transition measurement with infrared image in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2010,24(6):77-82. doi: 10.3969/j.issn.1672-9897.2010.06.017 [19] YOON S,JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal,1988,26(9):1025-1026. doi: 10.2514/3.10007 [20] KIM K H,KIM C,RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics,2001,174(1):38-80. doi: 10.1006/jcph.2001.6873 [21] ANDERSON W K,THOMAS J L,VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal,1986,24(9):1453-1460. doi: 10.2514/3.9465 [22] 沙心国,郭跃,纪锋,等. 高超声速圆锥边界层失稳条纹结构实验研究[J]. 空气动力学学报,2020,38(1):143-147. doi: 10.7638/kqdlxxb-2019.0141SHA X G,GUO Y,JI F,et al. Experimental study on instability streak structure over a hypersonic cone[J]. Acta Aerodynamica Sinica,2020,38(1):143-147. doi: 10.7638/kqdlxxb-2019.0141 -