留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马赫数3超声速来流湍流度对平板模型边界层转捩影响的试验研究

李猛 赵慧勇 袁强 陈力 母金河

李猛,赵慧勇,袁强,等. 马赫数3超声速来流湍流度对平板模型边界层转捩影响的试验研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20220087
引用本文: 李猛,赵慧勇,袁强,等. 马赫数3超声速来流湍流度对平板模型边界层转捩影响的试验研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20220087
LI M,ZHAO H Y,YUAN Q,et al. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20220087
Citation: LI M,ZHAO H Y,YUAN Q,et al. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20220087

马赫数3超声速来流湍流度对平板模型边界层转捩影响的试验研究

doi: 10.11729/syltlx20220087
基金项目: 国家重点研发计划(2020YFA0405700)
详细信息
    作者简介:

    李猛:(1995—),男,安徽阜阳人,硕士,工程师。研究方向:流动显示与非接触测量。通讯地址:四川省绵阳市涪城区二环路南段6号14信箱(621000)。E-mail:limeng33@mail.ustc.edu.cn

    通讯作者:

    E-mail:chenli_03@163.com

  • 中图分类号: V211.7

Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow

  • 摘要: 针对超声速来流湍流度(Tu)对转捩影响风洞试验数据缺乏的现状,开展了马赫数(Ma)3条件下不同来流湍流度对平板模型边界层转捩影响的试验研究。在中国空气动力研究与发展中心0.3 m×0.3 m跨超声速风洞(FL-24y)上,通过改变风洞稳定段内稳流参数,形成了来流湍流度在0.82%-1.63%范围内的变化。利用干涉瑞利散射技术测量了来流湍流度,利用红外热图技术测量了平板模型表面温度分布,得到了来流湍流度对转捩起始位置(Fonset)和转捩结束位置(Fend)影响的试验数据。根据试验来流条件,采用γ-Reθ转捩模型仿真了平板模型边界层转捩,并将仿真结果与风洞试验数据做了对比。结果表明:平板模型转捩试验测量结果和数值计算结果符合较好,两种方法得到的转捩起始位置相对误差≤2%,转捩结束位置相对误差≤5%。该试验结果可以为研究超声速来流湍流度对边界层转捩的影响规律提供数据支撑。
  • 图  1  FL-24y跨超声速风洞

    Figure  1.  FL-24y Subsonic wind tunnel

    图  2  平板模型

    Figure  2.  Plate model

    图  3  湍流度与边界层转捩测量光路布局

    Figure  3.  Optical arrangement of turbulence intensity and boundary layer transition measurement

    图  4  工况1-5速度脉动测量结果

    Figure  4.  Result of velocity pulsation measurement

    图  5  工况1-5测得的平均速度和湍流度结果

    Figure  5.  Result of turbulence intensity and velocity measurement

    图  6  平板边界层转捩红外图像

    Figure  6.  Infrared thermography image of the boundary layer transition

    图  7  工况4转捩三车次重复性测量结果

    Figure  7.  Repeatability measurement result of the boundary layer transition under flow condition 4

    图  8  平板边界层转捩测量结果

    Figure  8.  Result of the boundary layer transition

    图  9  来流湍流度对壁面摩擦系数影响的计算结果

    Figure  9.  Calculation result of turbulence intensity on skin fraction coefficient Cf

    表  1  试验参数

    Table  1.   Flow conditions

    工况烧结丝网数/层阻尼网数/层Pt/kPaTt/K
    125470293
    223471293
    315470293
    413470293
    505471293
    下载: 导出CSV

    表  2  试验结果与数值计算结果对比

    Table  2.   Comparison between experimental result and CFD simulation

    Tu/%Fonset/mmFend/mm
    试验值计算值e试验值计算值e
    0.82 21.29 20.87 −1.97% 43.88 43.34 −1.23%
    1.14 20.54 20.26 −1.36% 41.93 42.52 1.41%
    1.6317.9218.271.95% 39.8341.674.62%
    注:相对误差e=(计算值−试验值)/试验值×100%
    下载: 导出CSV
  • [1] 张扣立,常雨,孔荣宗,等. 温敏漆技术及其在边界层转捩测量中的应用[J]. 宇航学报,2013,34(6):860-865.

    ZHANG K L,CHANG Y,KONG R Z,et al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics,2013,34(6):860-865.
    [2] 刘向宏,赖光伟,吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报,2018,36(2):196-212. doi: 10.7638/kqdlxxb-2018.0017

    LIU X H,LAI G W,WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica,2018,36(2):196-212. doi: 10.7638/kqdlxxb-2018.0017
    [3] 陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q,TU G H,ZHANG Y F,et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [4] LANGTRY R B,MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal,2009,47(12):2894-2906. doi: 10.2514/1.42362
    [5] ABU-GHANNAM B J,SHAW R. Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science,1980,22(5):213-228. doi: 10.1243/jmes_jour_1980_022_043_02
    [6] LANGTRY R B, SENUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects[R]. AIAA-2015-2474. doi: 10.2514/6.2015-2474
    [7] 袁湘江,沙心国,时晓天,等. 高超声速流动中噪声与湍流度的关系[J]. 航空学报,2020,41(11):123791.

    YUAN X J,SHA X G,SHI X T,et al. Noise-turbulence relationship in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):123791.
    [8] SCHNEIDER S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets,1999,36(1):8-20. doi: 10.2514/2.3428
    [9] 盛森芝, 徐月亭, 袁辉靖. 热线热膜流速计[M]. 北京: 中国科学技术出版社, 2003.

    SHENG S Z. Hot-wire hot-film anemometer[M]. Beijing: China Science and Technology Press, 2003.
    [10] 王彦植,陈方,刘洪,等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学,2018,32(3):94-99. doi: 10.11729/syltlx20170160

    WANG Y Z,CHEN F,LIU H,et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):94-99. doi: 10.11729/syltlx20170160
    [11] SEASHOLTZ R G,BUGGELE A E,REEDER M F. Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer[J]. Optics and Lasers in Engineering,1997,27(6):543-570. doi: 10.1016/S0143-8166(96)00063-2
    [12] FAGAN A F, ZAMAN K Q, ELAM K. Two-point dynamic Rayleigh scattering measurements in a free jet[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-3109
    [13] CHEN L,YANG F R,SU T,et al. High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering[J]. Chinese Physics B,2017,26(2):345-348.
    [14] 杨富荣,陈力,闫博,等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学,2018,32(3):82-86. doi: 10.11729/syltlx20170103

    YANG F R,CHEN L,YAN B,et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):82-86. doi: 10.11729/syltlx20170103
    [15] 陈爱国,陈力,李志辉,等. 瑞利散射测速技术在高超声速流场中应用研究[J]. 实验流体力学,2017,31(6):51-55. doi: 10.11729/syltlx20170020

    CHEN A G,CHEN L,LI Z H,et al. Research on application of Rayleigh scattering velocity measurement in hypersonic low density wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2017,31(6):51-55. doi: 10.11729/syltlx20170020
    [16] ZUCCHER S,SARIC W S. Infrared thermography investigations in transitional supersonic boundary layers[J]. Experiments in Fluids,2008,44(1):145-157. doi: 10.1007/s00348-007-0384-1
    [17] MERTENS C,WOLF C C,GARDNER A D,et al. Advanced infrared thermography data analysis for unsteady boundary layer transition detection[J]. Measurement Science and Technology,2020,31(1):015301. doi: 10.1088/1361-6501/ab3ae2
    [18] 耿子海,何显中,王勋年,等. 红外成像非接触转捩测量低速风洞试验技术研究[J]. 实验流体力学,2010,24(6):77-82. doi: 10.3969/j.issn.1672-9897.2010.06.017

    GENG Z H,HE X Z,WANG X N,et al. Non-intrusive test technique investigation of transition measurement with infrared image in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2010,24(6):77-82. doi: 10.3969/j.issn.1672-9897.2010.06.017
    [19] YOON S,JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal,1988,26(9):1025-1026. doi: 10.2514/3.10007
    [20] KIM K H,KIM C,RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics,2001,174(1):38-80. doi: 10.1006/jcph.2001.6873
    [21] ANDERSON W K,THOMAS J L,VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal,1986,24(9):1453-1460. doi: 10.2514/3.9465
    [22] 沙心国,郭跃,纪锋,等. 高超声速圆锥边界层失稳条纹结构实验研究[J]. 空气动力学学报,2020,38(1):143-147. doi: 10.7638/kqdlxxb-2019.0141

    SHA X G,GUO Y,JI F,et al. Experimental study on instability streak structure over a hypersonic cone[J]. Acta Aerodynamica Sinica,2020,38(1):143-147. doi: 10.7638/kqdlxxb-2019.0141
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  92
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-09-26
  • 录用日期:  2022-10-08
  • 网络出版日期:  2022-11-15

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日