Experimental study on RP3 aviation kerosene oblique detonation engine
-
摘要: 在高马赫数飞行条件下,斜爆轰发动机热力学循环效率高,燃烧室长度短,是近些年国内外研究热点。但是,目前斜爆轰发动机试验研究都是使用氢气或者乙烯燃料,还没有航空煤油的试验结果。为了研究RP3航空煤油在斜爆轰发动机上的应用可行性,在JF-12激波风洞上开展了冷态RP3航空煤油斜爆轰发动机自由射流试验研究,JF-12激波风洞有效试验时间50 ms。针对航空煤油点火延迟时间长的难点,提出了鼓包强制起爆新技术。模拟了飞行马赫数9的状态,试验气流总温3800 K,平均当量比为0.9。试验中获得了稳定的斜爆轰波,证明了RP3航空煤油在斜爆轰发动机上的应用可行性。Abstract: The oblique detonation engine has great potential application in high flight Mach number airbreathing vehicles because of its higher thermodynamic efficiency and smaller size. The research about the oblique detonation engine is renewed all over the world in recent years. However, all of the oblique detonation experiments are conducted with hydrogen fuel or ethylene. There is no experimental result about the kerosene oblique detonation. In order to examine the application feasibility of kerosene oblique detonation engine, the experimental study on the liquid RP3 aviation kerosene oblique detonation engine is conducted in JF-12 shock tunnel and the test time is about 50ms. The difficult issue for the initiation of kerosene oblique detonation is that the ignition delay time of kerosene-air is too long and the autoignition cannot occur in the combustor. A new forced detonation initiation method is put forth to deal with this key issue. The total temperature of JF-12 shock tunnel is 3800 K and the global equivalence ratio is 0.9, which replicates Mach 9 flight-equivalent condition. The steady-state oblique detonation is obtained successfully during the experiments, which demonstrates the application feasibility of the kerosene oblique detonation engine.
-
表 1 风洞试验参数
Table 1. The experimental parameters
Cases Total temperature
(K)Total pressure
(MPa)StaticTemperature
(K)Static pressure
(Pa)Free stream
Mach numberFree stream
velocity (m/s)Test 20220105 3867 4.09 485 839 6.53 2884 Test 20220110 3865 4.08 484 829 6.54 2884 Test 20220112 3860 4.06 483 824 6.54 2882 Test 20220114 3799 3.78 474 768 6.55 2857 -
[1] DUNLAP R, BREHM R L, NICHOLLS J A. A preliminary study of the application of steady-state detonative combustion to a reaction engine[J]. Journal of Jet Propulsion, 1958, 28(7): 451–456. doi: 10.2514/8.7347 [2] MORRISON R B. Evaluation of the oblique detonation wave ramjet[R]. NASA TR-145358, 1978. [3] MORRISON R B. Oblique detonation wave ramjet[R]. NASA CR-159192, 1980. [4] OSTRANDER M J, HYDE J C, YOUNG M F, et al. Standing oblique detonation wave engine performance[R]. AI AA-87-2002, 1987. [5] PRATT D, HUMPHREY J, GLENN D. Morphology of a standing oblique detonation wave[C]//Proc of the 23rd Joint Propulsion Conference. 1987. doi: 10.2514/6.1987-1785 [6] PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837–845. doi: 10.2514/3.23399 [7] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4): 721–737.WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721–737. [8] 马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1–10.MA K F, ZHANG Z J, LIU Y F, et al. Flow mechanism of oblique detonation engines[J]. Physics of Gases, 2019, 4(3): 1–10. [9] 张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020.ZHANG Z J. Theory, technology and experimental verification of oblique detonation propulsion[D]. Beijing: University of Chinese Academy of Sciences, 2020. [10] 韩信, 刘云峰, 张子健, 等. 提高高马赫数超燃冲压发动机推力的理论方法[J]. 力学学报, 2022, 54(3): 633–643.HAN X, LIU Y F, ZHANG Z J, et al. The theoretical method to increase the thrust of high Mach number scramjets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633–643. [11] RUBINS P M, RHODES R P. Shock-induced combustion with oblique shocks, comparison of experiment and kinetic calculations[J]. AIAA Journal, 1963, 1(12): 2778–2784. doi: 10.2514/3.2172 [12] RUBINS P M, BAUER R C. Review of shock-induced supersonic combustion research and hypersonic applications[J]. Journal of Propulsion and Power, 1994, 10(5): 593–601. doi: 10.2514/3.23768 [13] STERLING J, CUMMINGS E, GHORBANIAN K, et al. Oblique detonation wave studies in the Caltech T-5 Shock Tunnel Facility[C]//Proc of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 1998. doi: 10.2514/6.1998-1561 [14] 林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙: 国防科学技术大学, 2008.LIN Z Y. Research on detonation initiation and development mechanisms in elevated temperature supersonic premixed mixture[D]. Changsha: National University of Defense Technology, 2008. [15] 韩旭. 超声速预混气中爆震波起爆与传播机理研究[D]. 长沙: 国防科学技术大学, 2013.HAN X. Research on detonation initiation and propagation mechanisms in supersonic premixed flows[D]. Changsha: National University of Defense Technology, 2013. [16] GONG J S, ZHANG Y N, PAN H, et al. Experimental investigation on initiation of oblique detonation waves[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017. doi: 10.2514/6.2017-2350 [17] ROSATO D A, THORNTON M, SOSA J, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2102244118. doi: 10.1073/pnas.2102244118 [18] 张子健, 韩信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术, 2021, 42(4): 786–794.ZHANG Z J, HAN X, MA K F, et al. Experimental research on combustion mechanism of oblique detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 786–794. [19] ZHANG Z J, WEN C, YUAN C K, et al. An experimental study of formation of stabilized oblique detonation waves in a combustor[J]. Combustion and Flame, 2022, 237: 111868. doi: 10.1016/j.combustflame.2021.111868 [20] 韩信, 张文硕, 张子健, 等. 鼓包诱导斜爆震波的数值研究[J]. 推进技术, 2022, 43(5): 190–201.HAN X, ZHANG W S, ZHANG Z J, et al. Numerical study of oblique detonation waves induced by a bump[J]. Journal of Propulsion Technology, 2022, 43(5): 190–201. [21] 韩信. 斜爆轰推进中的起爆与驻定问题研究[D]. 北京: 中国科学院大学, 2022. -