留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于立体阴影成像的俯仰水翼流动特性实验研究

魏晋武 梅笑寒 王倩

魏晋武, 梅笑寒, 王倩. 基于立体阴影成像的俯仰水翼流动特性实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220095
引用本文: 魏晋武, 梅笑寒, 王倩. 基于立体阴影成像的俯仰水翼流动特性实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220095
WEI J W, MEI X H, WANG Q. Experimental study on flow characteristics of pitching hydrofoil via stereo shadowgraph[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220095
Citation: WEI J W, MEI X H, WANG Q. Experimental study on flow characteristics of pitching hydrofoil via stereo shadowgraph[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220095

基于立体阴影成像的俯仰水翼流动特性实验研究

doi: 10.11729/syltlx20220095
基金项目: 国家自然科学基金(51976121,52011530187)
详细信息
    作者简介:

    魏晋武:(1998—),男,甘肃靖远人,硕士研究生。研究方向:实验流体力学。通信地址:上海市闵行区东川路800号上海交通大学闵行校区机械与动力工程学院(200240)。E-mail:jinwu_wei@sjtu.edu.cn

    通讯作者:

    E-mail:qianwang@sjtu.edu.cn

  • 中图分类号: TK71+2

Experimental study on flow characteristics of pitching hydrofoil via stereo shadowgraph

  • 摘要: 为研究俯仰水翼引起的涡旋射流的流动特性,使用立体阴影成像系统对流场进行了三维测量。通过比较二维粒子图像测速、二维粒子追踪测速和三维粒子追踪测速的计算结果,发现刚性对称NACA0012翼型在静水中固定位置的纯俯仰运动会产生2个方向的弱射流,同时伴随产生小尺度涡旋。速度统计结果表明,当水翼旋转角较大时,会产生更为明显的涡旋及速度变化。本文研究得到了水翼俯仰运动产生的三维尾流结构,发现深度方向(z方向)上也存在关于z=−3 mm平面对称的涡结构。三维测量结果表明,在有限翼型纵横比下,不能忽略水翼俯仰运动产生的复杂三维流动深度方向的速度分量。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental device

    图  2  翼型剖面图

    Figure  2.  Sectional view of the airfoil

    图  3  图像预处理

    Figure  3.  Image preprocessing

    图  4  周期平均速度场和涡量场(工况1)

    Figure  4.  Periodic average velocity field and vorticity field of case 1

    图  5  周期平均速度场和涡量场(工况2)

    Figure  5.  Periodic average velocity field and vorticity field of case 2

    图  6  二维速度概率密度函数估算值

    Figure  6.  Estimation of 2D velocity probability density function

    图  7  粒子轨迹图(工况1)

    Figure  7.  Particle trajectory diagram of case 1

    图  8  粒子轨迹图(工况2)

    Figure  8.  Particle trajectory diagram of case 2

    图  9  二维速度概率密度函数估算值

    Figure  9.  Estimation of 2D velocity probability density function

    图  10  三维运动轨迹(工况1)

    Figure  10.  Three dimensional motion trajectory of case 1

    图  11  三维运动轨迹(工况2)

    Figure  11.  Three dimensional motion trajectory of case 2

    图  12  三维速度概率密度函数估算值

    Figure  12.  Estimation of 3D velocity probability density function

    表  1  2种实验工况下的水翼运动参数

    Table  1.   Hydrofoil motion parameters under two experimental conditions

    参数数值
    工况1工况2
    弦长c/mm5050
    转动中心与前缘距离d/mm55
    最大旋转角θmax /(°) ± 10 ± 20
    后缘最大速度ute /(m·s−10.300.30
    雷诺数Re1.48 × 1041.48 × 104
    转动频率f /Hz2010
    转动幅度a/mm7.8415.63
    斯特劳哈尔数Sr0.49940.4975
    下载: 导出CSV
  • [1] SRIGRAROM S, VINCENT C. Effect of pitching and heaving motions of SD8020 hydrofoil on thrust and efficiency for swimming propulsion[C]//Proc of the 38th Fluid Dynamics Conference and Exhibition. 2008: 3959. doi: 10.2514/6.2008-3959
    [2] SCHNIPPER T, ANDERSEN A, BOHR T. Vortex wakes of a flapping foil[J]. Journal of Fluid Mechanics, 2009, 633: 411–423. doi: 10.1017/s0022112009007964
    [3] KIM D H, CHANG J W. Unsteady boundary layer for a pitching airfoil at low Reynolds numbers[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 429–440. doi: 10.1007/s12206-009-1105-x
    [4] RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. 3rd ed. Berlin, German: Springer, 2018. doi: 10.1007/978-3-319-68852-7
    [5] DABIRI D, PECORA C. Particle tracking velocimetry[M]. Bristol: IOP Publishing, 2020.
    [6] WU X, ZHANG X T, TIAN X L, et al. A review on fluid dynamics of flapping foils[J]. Ocean Engineering, 2020, 195: 106712. doi: 10.1016/j.oceaneng.2019.106712
    [7] SHINDE S Y, ARAKERI J H. Jet meandering by a foil pitching in quiescent fluid[J]. Physics of Fluids, 2013, 25(4): 041701. doi: 10.1063/1.4800321
    [8] DAVID L, JARDIN T, BRAUD P, et al. Time-resolved scanning tomography PIV measurements around a flapping wing[J]. Experiments in Fluids, 2012, 52(4): 857–864. doi: 10.1007/s00348-011-1148-5
    [9] SURYADI A, OBI S. The estimation of pressure on the surface of a flapping rigid plate by stereo PIV[J]. Experiments in Fluids, 2011, 51(5): 1403–1416. doi: 10.1007/s00348-011-1150-y
    [10] CHENG B, SANE S P, BARBERA G, et al. Three-dimensional flow visualization and vorticity dynamics in revolving wings[J]. Experiments in Fluids, 2013, 54(1): 1423. doi: 10.1007/s00348-012-1423-0
    [11] MAAS H G, GRUEN A, PAPANTONIOU D. Particle tracking velocimetry in three-dimensional flows: part 1. Photogrammetric determination of particle coordinates[J]. Experiments in Fluids, 1993, 15(2): 133–146. doi: 10.1007/bf00190953
    [12] GUEZENNEC Y G, BRODKEY R S, TRIGUI N, et al. Algorithms for fully automated three-dimensional particle tracking velocimetry[J]. Experiments in Fluids, 1994, 17(4): 209–219. doi: 10.1007/BF00203039
    [13] SCHANZ D, GESEMANN S, SCHRÖDER A. Shake-The-Box: Lagrangian particle tracking at high particle image densities[J]. Experiments in Fluids, 2016, 57(5): 70. doi: 10.1007/s00348-016-2157-1
    [14] WANG Q, ZHANG Y. High speed stereoscopic shadowgraph imaging and its digital 3D reconstruction[J]. Measurement Science and Technology, 2011, 22(6): 065302. doi: 10.1088/0957-0233/22/6/065302
    [15] WU Y, WANG Q, ZHAO C Y. Three-Dimensional droplet splashing dynamics measurement with a stereoscopic shadowgraph system[J]. International Journal of Heat and Fluid Flow, 2020, 83: 108576. doi: 10.1016/j.ijheatfluidflow.2020.108576
    [16] WU Y, WANG Q, ZHAO C Y. A spatial-temporal algorithm for three-dimensional particle tracking velocimetry using two-view systems[J]. Measurement Science and Technology, 2021, 32(6): 065011. doi: 10.1088/1361-6501/abeb43
    [17] OLIVEIRA J L G, VAN DER GELD C W M, KUERTEN J G M. Turbulent stresses and particle break-up criteria in particle-laden pipe flows[J]. International Journal of Heat and Fluid Flow, 2015, 53: 44–55. doi: 10.1016/j.ijheatfluidflow.2015.02.001
    [18] ZHANG Z Y. Motion and structure from two perspective views: from essential parameters to Euclidean motion through the fundamental matrix[J]. Journal of the Optical Society of America A, 1997, 14(11): 2938–2950. doi: 10.1364/JOSAA.14.002938
    [19] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718
    [20] THIELICKE W, SONNTAG R. Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab[J]. Journal of Open Research Software, 2021, 9(1): 12. doi: 10.5334/jors.334
    [21] BREVIS W, NIÑO Y, JIRKA G H. Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry[J]. Experiments in Fluids, 2011, 50(1): 135–147. doi: 10.1007/s00348-010-0907-z
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  95
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 修回日期:  2022-11-12
  • 录用日期:  2022-11-14
  • 网络出版日期:  2023-03-14

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日