留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TDLAS多线吸收的超燃冲压发动机直连台架燃烧场二维分布测量

夏晖晖 张顺平 杨顺华 阚瑞峰 许振宇 阮俊 姚路 黄安

夏晖晖, 张顺平, 杨顺华, 等. 基于TDLAS多线吸收的超燃冲压发动机直连台架燃烧场二维分布测量[J]. 实验流体力学, doi: 10.11729/syltlx20220103
引用本文: 夏晖晖, 张顺平, 杨顺华, 等. 基于TDLAS多线吸收的超燃冲压发动机直连台架燃烧场二维分布测量[J]. 实验流体力学, doi: 10.11729/syltlx20220103
XIA H H, ZHANG S P, YANG S H, et al. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220103
Citation: XIA H H, ZHANG S P, YANG S H, et al. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220103

基于TDLAS多线吸收的超燃冲压发动机直连台架燃烧场二维分布测量

doi: 10.11729/syltlx20220103
基金项目: 国家重点研发计划资助(批准号:2020YFA0405703);安徽省自然科学基金资助(批准号:2008085QF317)
详细信息
    作者简介:

    夏晖晖:(1988—),男,汉族,安徽合肥人,副研究员。研究方向:可调谐激光吸收光谱极端流场诊断技术。通信地址:安徽省合肥市蜀山区科学岛安光所综合实验楼北楼438(230031)。E-mail:hhxia@aiofm.ac.cn

    通讯作者:

    E-mail:kanruifeng@aiofm.ac.cn

  • 中图分类号: O433.1V411.7

Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines

  • 摘要: 针对超燃冲压发动机燃烧室扩张段非均匀流场温度和水汽浓度二维分布高分辨率测量需求,发展了先进的可调谐激光吸收光谱(TDLAS)燃烧场分布重建技术,通过增加激光测量光路上扫描获得的水汽吸收谱线数目,实现场分布重建问题求解方程数量的增加,联立所有交叉光路下吸收光谱获得的吸光度方程,构建以温度和浓度为未知数的最优化目标函数,利用全局寻优模拟退火算法对目标函数进行求解,实现温度场和水汽分压场的重建。发动机直连台架试验中,采用正交光路布局,设计共16条测量光路(水平5条、垂直11条)的方形光机结构,集成TDLAS测量系统。对5只DFB激光器采用分时直接吸收探测方式,测量频率4 kHz,每条测量光路下可扫描获得5条水汽吸收谱线(7467.77、7444.36、7185.60、7179.75和6807.83 cm),系统在高温炉上开展了多温度台阶标定测试,温度测量偏差在2.7%以内。外场试验中,对16条光路下同步采集到的吸收光谱数据进行离线处理,获得了发动机燃油点火、燃烧、熄火各个状态下的温度场和水汽分压场分布数据。试验结果表明:TDLAS多线吸收测量技术能够实现场分布准确稳定测量,满足发动机复杂燃烧流场诊断和恶劣工况工程应用需求。
  • 图  1  高温炉温度测量标定结果

    Figure  1.  Measured results of temperature based on high-temperature furnace

    图  2  发动机燃烧场二维分布TDLAS测量示意图

    Figure  2.  Schematic diagram of two-dimensional distribution measurement in engine combustion field by TDLAS technique

    图  3  直接吸收光谱信号与标准具干涉信号

    Figure  3.  Direct absorption spectral signal and interference signal

    图  4  发动机燃烧室扩张段多路线平均温度测量结果

    Figure  4.  Light 0f sight average temperature measurement results of engine combustion chamber expansion segment

    图  5  680 ms时燃烧室扩展段的温度分布

    Figure  5.  Temperature distribution of the combustion chamber expansion section in the 680 ms moment

    图  6  680 ms时燃烧室扩展段第的水汽分压分布

    Figure  6.  H2O partial pressure distribution of the combustion chamber expansion section in the 680 ms moment

    图  7  燃烧室扩展段第1000 ms的温度分布

    Figure  7.  Temperature distribution of the combustion chamber expansion section in the 1000 ms moment

    图  8  燃烧室扩展段第1000 ms的水汽分压分布

    Figure  8.  H2O partial pressure distribution of the combustion chamber expansion section in the 1000 ms moment

    图  9  燃烧室扩展段第1400 ms的温度分布

    Figure  9.  Temperature distribution of the combustion chamber expansion section in the 1400 ms moment

    图  10  燃烧室扩展段第1400 ms的水汽分压分布

    Figure  10.  H2O partial pressure distribution of the combustion chamber expansion section in the 1400 ms moment

    表  1  筛选的水汽吸收谱线光谱参数

    Table  1.   Selected water vapor absorption spectral parameters

    $ \lambda $/nm$ {v}_{0} $/cm−1${E}{{'}{'} }$/cm−1$ {S}_{vi} $(296 k)
    (HITRAN)
    /(cm−1atm−1
    $ {S}_{vi} $(296 k)
    (Measured)
    /(cm−1atm−1
    13397467.772551.481.27e−51.093e−5
    13437444.361790.711.16e−31.100e−3
    13927185.601045.061.97e−21.905e−2
    13937179.751216.195.97e−35.814e−3
    14696807.833319.456.17e−76.032e−7
    下载: 导出CSV
  • [1] ČARNOGURSKÁ M, PŘÍHODA M, KOŠKO M, et al. Verification of pollutant creation model at dendromass combustion[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 4161–4169. doi: 10.1007/s12206-012-0877-6
    [2] JACKSON K, GRUBER M, BUCCELLATO S. HIFiRE flight 2 project overview and status update 2011[C]//Proc of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. doi: 10.2514/6.2011-2202
    [3] SUR R, SUN K, JEFFRIES J B, et al. TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier[J]. Applied Physics B, 2014, 116(1): 33–42. doi: 10.1007/s00340-013-5644-6
    [4] BRYNER E, SHARMA M, DISKIN G, et al. Tunable diode laser absorption technique development for determination of spatially resolved water concentration and temperature[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 299. doi: 10.2514/6.2010-299
    [5] 赵然, 蔡文哲. 航空发动机燃烧室出口温度分布调试与测试技术研究[J]. 战术导弹技术, 2018(5): 84–89.

    ZHAO R, CAI W Z. Debugging and testing technology for temperature distribution of aero engine outlet[J]. Tactical Missile Technology, 2018(5): 84–89.
    [6] BOLSHOV M A, KURITSYN Y A, ROMANOVSKII Y V. Tunable diode laser spectroscopy as a technique for combustion diagnostics[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 106: 45–66. doi: 10.1016/j.sab.2015.01.010
    [7] WEIWEI, CAI,. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 2017, 59: 1–31. doi: 10.1016/j.pecs.2016.11.002
    [8] LIU C, XU L J, CAO Z. Measurement of nonuniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods[J]. Applied Optics, 2013, 52(20): 4827–4842. doi: 10.1364/AO.52.004827
    [9] ZHANG G L, LIU J G, XU Z Y, et al. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS[J]. Applied Physics B, 2016, 122(1): 3. doi: 10.1007/s00340-015-6289-4
    [10] BUSA K, BRYNER E, MCDANIEL J, et al. Demonstration of capability of water flux measurement in a scramjet combustor using tunable diode laser absorption tomography and stereoscopic PIV[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 1294. doi: 10.2514/6.2011-1294
    [11] ZHANG L F, WANG F, ZHANG H D, et al. Simultaneous measurement of gas distribution in a premixed flame using adaptive algebraic reconstruction technique based on the absorption spectrum[J]. Chinese Optics Letters, 2016, 14(11): 111201–111205. doi: 10.3788/col201614.111201
    [12] 宋俊玲, 洪延姬, 王广宇, 等. 光线分布对基于TDLAS温度场二维重建的影响[J]. 红外与激光工程, 2014, 43(8): 2460–2465.

    SONG J L, HONG Y J, WANG G Y, et al. Influence of beam distribution on two-dimensional temperature field reconstruction using TDLAS[J]. Infrared and Laser Engineering, 2014, 43(8): 2460–2465.
    [13] HUIHUI, XIA,. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 2017, 90: 10–18. doi: 10.1016/j.optlaseng.2016.09.005
    [14] CAI W W, KAMINSKI C F. A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry[J]. Applied Physics B, 2015, 119(1): 29–35. doi: 10.1007/s00340-015-6012-5
    [15] MA L, LI X S, SANDERS S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152–1162. doi: 10.1364/OE.21.001152
    [16] 辛明原, 金星, 宋俊玲. 基于多波长激光吸收光谱技术的气体温度二维重建[J]. 航天器环境工程, 2016, 33(3): 269–274. doi: 10.12126/see.2016.03.007

    XIN M Y, JIN X, SONG J L. Two-dimensional reconstruction of gas temperature based on multi-wavelength laser absorption spectroscopy[J]. Spacecraft Environment Engineering, 2016, 33(3): 269–274. doi: 10.12126/see.2016.03.007
    [17] 林鑫, 李飞, 王宽亮, 等. 旋流火焰燃烧温度场二维吸收光谱诊断[J]. 气体物理, 2019, 4(2): 55–61.

    LIN X, LI F, WANG K L, et al. Diode laser absorption tomography for swirling flame diagnostics[J]. Physics of Gases, 2019, 4(2): 55–61.
    [18] 臧益鹏, 许振宇, 黄安, 等. 基于改进模拟退火算法的非均匀燃烧场分布重建[J]. 物理学报, 2021, 70(13): 111–122.

    ZANG Y P, XU Z Y, HUANG A, et al. Distribution reconstruction of non-uniform combustion field based on improved simulated annealing algorithm[J]. Acta Physica Sinica, 2021, 70(13): 111–122.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  118
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-10-20
  • 录用日期:  2022-11-03
  • 网络出版日期:  2023-03-14

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日