留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层温敏漆测温的固着液滴蒸发传热特性研究

李冰杰 张舒蕾 董新宇 王腾 米梦龙 刘璐

李冰杰, 张舒蕾, 董新宇, 等. 基于双层温敏漆测温的固着液滴蒸发传热特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20220132
引用本文: 李冰杰, 张舒蕾, 董新宇, 等. 基于双层温敏漆测温的固着液滴蒸发传热特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20220132
LI B J, ZHANG S L, DONG X Y, et al. Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220132
Citation: LI B J, ZHANG S L, DONG X Y, et al. Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220132

基于双层温敏漆测温的固着液滴蒸发传热特性研究

doi: 10.11729/syltlx20220132
基金项目: 国家自然科学基金项目(51876065);河北省自然科学基金项目(E2019502183);中央高校基本科研业务费项目(2020MS108、2020MS144)
详细信息
    作者简介:

    李冰杰:(1998—),男,安徽马鞍山人,硕士研究生。研究方向:多相流传热传质,温敏漆测温应用。通信地址:河北省保定市莲池区华北电力大学动力工程系。E-mail:l13122296873@163.com

    通讯作者:

    E-mail:luliu@ncepu.edu.cn

  • 中图分类号: TK221

Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint

  • 摘要: 温敏漆测温作为新型的非接触式测温方法,具有成本低、响应快等优点。本文采用了基于双层温敏漆的测温技术以研究固着液滴蒸发的传热特性。通过双层温敏漆测温,分别得到液滴与加热基底接触面以及基底背部的温度分布,构建一维非稳态导热反问题模型,获得液滴与基底接触面处的热流密度分布。研究结果表明,液滴汽化过程可以分为三个阶段:初始加热阶段,对流单元蒸发阶段和薄膜蒸发阶段。在初始加热阶段,热流密度迅速上升。在对流单元蒸发阶段,热流密度逐渐减小后基本维持不变。在薄膜蒸发阶段,由于液膜较薄,汽化增强,热流密度先增大,随液滴即将完全蒸发,其热流密度又迅速减小。通过校核液滴蒸发换热量,验证了本文实验方法的可靠性,本文研究成果有助于拓宽相变传热热流密度的实验测量方法。
  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  温敏漆的激发光谱与发射光谱

    Figure  2.  Excitation spectrum and emission spectrum of temperature sensitive paint

    图  3  温敏漆光强-温度标定曲线

    Figure  3.  Calibration curve of light intensity temperature of temperature sensitive paint

    图  4  温度数据滤波效果

    Figure  4.  Filtering effect of temperature data

    图  5  物理模型示意图

    Figure  5.  Schematic diagram of physical model

    图  6  正戊烷液滴蒸发的俯视图、上表面温度分布图、下表面温度分布图和热流密度分布图

    Figure  6.  Top view, upper surface temperature distribution, lower surface temperature distribution and heat flux distribution of n-pentane droplet evaporation

    图  7  坐标选取示意图

    Figure  7.  Schematic diagram of coordinate selection

    图  8  液滴接触面径向温度分布随时间变化

    Figure  8.  Change of radial temperature distribution on droplet contact surface with time

    图  9  液滴接触面热流密度分布随时间的变化

    Figure  9.  Variation of Heat Flux Distribution on Droplet Contact Surface with Time

    图  10  液滴固液接触面中心位置热流密度,基底上、下表面温度随时间的变化

    Figure  10.  Change of heat flux at the center of the solid-liquid contact surface of the droplet, and the temperature of the upper and lower surfaces of the substrates with time

  • [1] 靳思宇, 李一兴, 翁史烈. 逆流式喷雾场中气液两相流温度测量装置[J]. 实验流体力学, 2008, 22(4): 63–67. doi: 10.3969/j.issn.1672-9897.2008.04.014

    JIN S Y, LI Y X, WENG S L. Device for temperature measurement in counter-current gas-liquid spraying field[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 63–67. doi: 10.3969/j.issn.1672-9897.2008.04.014
    [2] 董彬, 孙权, 高春艳, 等. 动力电池喷雾冷却换热特性研究[J]. 工程热物理学报, 2022, 43(6): 1588–1595.

    DONG B, SUN Q, GAO C Y, et al. Study on spray cooling heat transfer performance of power battery[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1588–1595.
    [3] XUE S D, XI X, LAN Z, et al. Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121516. doi: 10.1016/j.ijheatmasstransfer.2021.121516
    [4] ZHENG L, CHENG X J, CAO L D, et al. Enhancing pesticide droplet deposition through O/W Pickering Emulsion: Synergistic stabilization by Flower-like ZnO particles and polymer emulsifier[J]. Chemical Engineering Journal, 2022, 434: 134761. doi: 10.1016/j.cej.2022.134761
    [5] SANTANGELO P E, ROMAGNOLI M, PUGLIA M. An experimental approach to evaluate drying kinetics and foam formation in inks for inkjet printing of fuel-cell layers[J]. Experimental Thermal and Fluid Science, 2022, 135: 110631. doi: 10.1016/j.expthermflusci.2022.110631
    [6] TOFAN T, JASEVIČIUS R. Modelling of the motion and interaction of a droplet of an inkjet printing process with physically treated polymers substrates[J]. Applied Sciences, 2021, 11(23): 11465. doi: 10.3390/app112311465
    [7] PAN Z H, WEIBEL J A, GARIMELLA S V. Transport mechanisms during water droplet evaporation on heated substrates of different wettability[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119524. doi: 10.1016/j.ijheatmasstransfer.2020.119524
    [8] TEMBELY M, VADILLO D C, DOLATABADI A, et al. A machine learning approach for predicting the maximum spreading factor of droplets upon impact on surfaces with various wettabilities[J]. Processes, 2022, 10(6): 1141. doi: 10.3390/pr10061141
    [9] WANG F, GAO X, XIAO Y C, et al. Thick exchange layer evaporation model with natural convection effect and evaporation experimental study for multicomponent droplet[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1903–1918. doi: 10.1016/j.cja.2020.02.005
    [10] HAN T, CHOI Y, NA U, et al. Fast nucleation of water by self-arrangement of hydrophilic crystals on a hierarchically structured surface promoting coalescence-induced droplet jumping[J]. Applied Thermal Engineering, 2021, 198: 117444. doi: 10.1016/j.applthermaleng.2021.117444
    [11] JIANG Y N, CHI F X, CHEN Q S, et al. Effect of substrate microstructure on thermocapillary flow and heat transfer of nanofluid droplet on heated wall[J]. Microgravity Science and Technology, 2021, 33(3): 37. doi: 10.1007/s12217-021-09888-2
    [12] LEE H J, CHOI C K, LEE S H. Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123206. doi: 10.1016/j.ijheatmasstransfer.2022.123206
    [13] GIBBONS M J, DI MARCO P, ROBINSON A J. Local heat transfer to an evaporating superhydrophobic droplet[J]. International Journal of Heat and Mass Transfer, 2018, 121: 641–652. doi: 10.1016/j.ijheatmasstransfer.2018.01.007
    [14] TAROZZI L, MUSCIO A, TARTARINI P. Experimental tests of dropwise cooling on infrared-transparent media[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 857–865. doi: 10.1016/j.expthermflusci.2006.09.005
    [15] RICHARDS C D, RICHARDS R F. Transient temperature measurements in a convectively cooled droplet[J]. Experiments in Fluids, 1998, 25(5): 392–400. doi: 10.1007/s003480050246
    [16] HASHIMI H A, KIM J. Quantum dot temperature sensor ab initio test: droplet vaporization heat transfer[C]// Proceedings of the ASME 2016 Heat Transfer Summer Conference. 2016.
    [17] LIU T S, SULLIVAN J P. Pressure and temperature sensitive paints[M]. Berlin: Springer, 2005.
    [18] Liu T S, CAMPBELL B T, SULLIVAN J P. Fluorescent paint for measurement of heat transfer in shock - turbulent boundary layer interaction[J]. Experimental Thermal and Fluid Science, 1995, 10(1): 101–112. doi: 10.1016/0894-1777(94)00068-J
    [19] LIU T S, CAMPBELL B T, BURNS S P, et al. Temperature- and pressure-sensitive luminescent paints in aerodynamics[J]. Applied Mechanics Reviews, 1997, 50(4): 227–246. doi: 10.1115/1.3101703
    [20] FRANCOM M, KIM J. Experimental investigation into the heat transfer mechanism of oscillating heat pipes using temperature sensitive paint[J]. Journal of Heat Transfer, 2021, 143(4): 041901. doi: 10.1115/1.4049512
    [21] HIRAI Y, MALLETTE A, NISHIO Y, et al. Visualization of icing of supercooled water using Tb(III)-based temperature-sensitive paint[J]. Sensors and Actuators A:Physical, 2019, 285: 599–602. doi: 10.1016/j.sna.2018.11.051
    [22] AL HASHIMI H, HAMMER C F, LEBON M T, et al. Phase-change heat transfer measurements using temperature-sensitive paints[J]. Journal of Heat Transfer, 2018, 140(3): 031601. doi: 10.1115/1.4038135
    [23] 张扣立, 周嘉穗, 孔荣宗, 等. CARDC激波风洞TSP技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151

    ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151
    [24] 刘旭, 彭迪, 刘应征. 温敏涂料TSP热流密度测量方法及应用[J]. 气体物理, 2020, 5(5): 1–12. doi: 10.19527/j.cnki.2096-1642.0872

    LIU X, PENG D, LIU Y Z. Methods and applications of heat flux measurement using TSP[J]. Physics of Gases, 2020, 5(5): 1–12. doi: 10.19527/j.cnki.2096-1642.0872
    [25] LIU L, ZHANG K Q, LIU H Y, et al. Experimental study on the interfacial heat transfer of sessile droplet evaporation using temperature-sensitive paint[J]. Experimental Thermal and Fluid Science, 2021, 128: 110436. doi: 10.1016/j.expthermflusci.2021.110436
    [26] 张凯祺. 基于温敏漆的液滴撞击壁面蒸发过程传热特性研究[D]. 保定: 华北电力大学, 2021.

    ZHANG K Q. Study of interfacial heat transfer on droplet impacting heated surface evaporation using temperature sensitive paint[D]. Bao Ding: North China Electric Power University, 2021. doi: 10.27139/d.cnki.ghbdu.2021.000203.
    [27] LORENZ M, HORBACH T, SCHULZ A, et al. A novel measuring technique utilizing temperature sensitive paint—measurement procedure, validation, application, and comparison with infrared thermography[J]. Journal of Turbomachinery, 2013, 135(3): 031003. doi: 10.1115/1.4006638
    [28] MOAVENI S, KIM J. An inverse solution for reconstruction of the heat transfer coefficient from the knowledge of two temperature values in a solid substrate[J]. Inverse Problems in Science and Engineering, 2017, 25(1): 129–153. doi: 10.1080/17415977.2016.1161035
    [29] GIBBONS M J, DI MARCO P, ROBINSON A J. Heat flux distribution beneath evaporating hydrophilic and superhydrophobic droplets[J]. International Journal of Heat and Mass Transfer, 2020, 148(C): 119093. doi: 10.1016/j.ijheatmasstransfer.2019.119093
    [30] GUGGILLA G, NARAYANASWAMY R, PATTAMATTA A. An experimental investigation into the spread and heat transfer dynamics of a train of two concentric impinging droplets over a heated surface[J]. Experimental Thermal and Fluid Science, 2020, 110: 109916. doi: 10.1016/j.expthermflusci.2019.109916
  • 加载中
图(10)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  97
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-01-09
  • 录用日期:  2023-01-28
  • 网络出版日期:  2023-05-06

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日