Simulation and experimental study of inlet heating simulator for a turbofan engine
-
摘要: 由于现有进气加温试验装置温场条件不能满足某型发动机的指标要求,因此开展了新型进气加温装置结构设计、测试方案、温场评估方法及加温条件下稳态与过渡态的试验方案等研究,确保发动机进口温场满足要求。本文基于某型发动机4种进气条件,以温场周向不均匀度为表征方法,进行进气加温模拟装置出口温场均匀性数值仿真分析,仿真结果表明新设计的试验装置温场周向不均匀度满足≯1%的指标要求。同时开展某型涡扇发动机与进气加温装置的多工况联合试验,稳态试验表明发动机最高转速下温场周向不均匀度为0.4395%,温场分布与仿真结果表现基本一致;过渡态试验结果表明进口温场不均匀度与发动机进口温度变化速率有关,不同发动机工况下进口温度调节方法是温场周向不均匀度满足要求的关键。仿真分析及联合试验结果表明,新设计的进气加温装置能够满足发动机多工况试验时对进口温场周向不均匀度的要求。Abstract: Since the temperature field conditions of the existing intake heating test device cannot meet the index requirements of a certain engine, the structural design, test scheme, temperature field evaluation method, and steady-state and transition state test scheme of the new intake heating device are carried out to ensure that the engine inlet temperature field meets the requirements. This paper makes a numerical simulation analysis of the temperature field uniformity using four engine inlet conditions and using the circumferential non-uniformity method. The simulation results show that the circumferential non-uniformity of the temperature field ≯1%. At the same time, the combined tests of a turbofan engine and the intake heating device under multiple operating conditions were carried out. The steady-state tests show that the circumferential non-uniformity of the temperature field at the highest engine speed was 0.4395%, and the temperature field distribution was consistent with the simulation results. The results of the transition state test show that the inlet temperature field unevenness is related to the engine inlet temperature change rate, and the inlet temperature regulation method is the key to meet the requirements of temperature field circumferential unevenness under different engine working conditions. The results of simulation analysis and joint test show that the newly designed inlet heating device can meet the requirements of circumferential unevenness of the inlet temperature field in the multi-condition engine test.
-
表 1 进气加温试验测量参数表
Table 1. Measurement parameters of inlet heating test
参数符号 截面 单位 支和点 测量
精度时间常数 布置方式 Tw 稳压箱
总温℃ 12 × 8 ± 1℃ ≯0.1 s 周向均布,径向等环面 T1 进气道
总温℃ 8 × 8 ± 1℃ ≯0.1 s 周向均布,径向等环面 表 2 不同网格数量仿真计算对比
Table 2. Comparison of simulation calculation with different grid numbers
发动机状态 网格总数(个) $\Delta \bar{T}_{{\rm{2max}}}/\%$ n1cor = 81.8% 3600575 0.6714 W1 = 67.61% 4207864 0.4992 T1 = 100% 4986632 0.4796 表 3 发动机不同状态点进口流量和温度
Table 3. Inlet flow and temperature at different engine state points
n1cor/% W1/% T1/% 相对压力/% 81.8 67.61 100 99.26 86.8 83.58 88.94 97.43 88.1 88.02 86.28 96.38 90.7 97.92 80.53 94.57 表 4 仿真计算结果
Table 4. Simulation results
n1cor/% $\Delta {T}_{{\rm{1max}}}$% $T_{{\rm{2{FAV} }}}$% $\Delta \bar{T}_{{\rm{2max}}}$/% 81.8 100.6 99.78 0.483 86.8 89.38 88.63 0.691 88.1 87.01 85.73 0.831 90.7 81.92 80.02 0.983 表 5 不同截面温场周向不均匀度仿真结果
Table 5. Simulation results of different sections
n1cor(%) 距掺混器
出口6 m (%)距掺混器
出口13 m (%)发动机
进口(%)81.8 2.75 1.07 0.483 86.8 1.92 1.21 0.691 88.1 3.61 2.22 0.831 90.7 2.82 1.90 0.983 表 6 试验温场计算结果
Table 6. Temperature field calculation results
n1cor/% $\Delta T_1 $/% $\delta T_{{\rm{2FAV}}}$/% $\Delta \bar{T}_{2}$/% $\theta^{+}$/(°) 84.26 98.6 4.58 0.3501 233 85.07 97.7 3.16 0.3518 245 86.82 89.38 1.94 0.3740 185 89.02 87.01 1.75 0.4294 198 90.2 82.01 1.76 0. 4395 200 -
[1] 陈益林. 航空发动机试车工艺[M]. 北京: 北京航空航天大学出版社, 2010: 129-131.CHEN Y L. Aeroengine test Run technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2010: 129-131. [2] BRITHWAITE W M. Experimental Evaluation of a TF30-P-3Turbofan Engine in an Altitude Test Facility; Effect of Steady-State Temperature Distortion [R]. NASA T MX-2921, 1973. [3] SAE-16. A Current Assessment of the Inlet Engine Temperature Distortion Problem[R]. ARD 500015, 1991. [4] SAE. Aerospace Recommanded Practice Gasturbine engine inlet flow distortion guidelines[S]. Society of Automotive Engineers, ARP 1420, 1978. [5] 常淑清, 胡九生, 夏光义, 等. 温度畸变对航空发动机影响的研究[M]. 北京: 中国航空工业总公司第三零一研究所, 1995. [6] 叶巍, 乔渭阳, 侯敏杰. 发动机在进气温度畸变条件下的特性研究[J]. 推进技术, 2008, 29(6): 677–680. doi: 10.3321/j.issn:1001-4055.2008.06.008YE W, QIAO W Y, HOU M J. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology, 2008, 29(6): 677–680. doi: 10.3321/j.issn:1001-4055.2008.06.008 [7] 叶培梁, 刘大响. 进口温度畸变对涡扇发动机稳定性影响的试验研究[J]. 燃气涡轮试验与研究, 2001, 14(1): 38–45. doi: 10.3969/j.issn.1672-2620.2001.01.009YE P L, LIU D X. An experimental investigation in effects of inlet temperature distortion on turbofan stability[J]. Ranqi Wolun Shiyan Yu Yanjiu, 2001, 14(1): 38–45. doi: 10.3969/j.issn.1672-2620.2001.01.009 [8] 侯敏杰, 石小江, 罗华锋. 发动机进气温度畸变高响应温度测试技术研究[J]. 燃气涡轮试验与研究, 2005, 18(2): 41–48. doi: 10.3969/j.issn.1672-2620.2005.02.009HOU M J, SHI X J, LUO H F. A study on high response instrumentation technology used in aero-engine inlet temperature distortion measurement[J]. Gas Turbine Experiment and Research, 2005, 18(2): 41–48. doi: 10.3969/j.issn.1672-2620.2005.02.009 [9] 谢业平, 刘永泉, 潘宝军. 真实进气条件下发动机气动稳定性计算方法[J]. 航空动力学报, 2019, 34(4): 804–812.XIE Y P, LIU Y Q, PAN B J. Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power, 2019, 34(4): 804–812. [10] 张天飞, 叶巍, 陆德雨, 等. 某型涡扇发动机进口温度畸变的稳定性评定试验技术研究[J]. 航空动力学报, 2003, 18(6): 783–787. doi: 10.3969/j.issn.1000-8055.2003.06.014ZHANG T F, YE W, LU D Y, et al. Stability assessment test technology of a turbofan engine inlet temperature distortion[J]. Journal of Aerospace Power, 2003, 18(6): 783–787. doi: 10.3969/j.issn.1000-8055.2003.06.014 [11] 黄顺洲. 压力温度组合畸变对发动机稳定性影响的数值研究[J]. 燃气涡轮试验与研究, 2002, 15(1): 28–32. doi: 10.3969/j.issn.1672-2620.2002.01.007HUANG S Z. A numerical study in effect of combined pressure and temperature distortion on engine stability[J]. Gas Turbine Experiment and Research, 2002, 15(1): 28–32. doi: 10.3969/j.issn.1672-2620.2002.01.007 [12] 叶巍, 侯敏杰, 周志文. 压力、温度组合畸变对某发动机影响的数值研究[J]. 燃气涡轮试验与研究, 2007, 20(4): 41–44,21. doi: 10.3969/j.issn.1672-2620.2007.04.009YE W, HOU M J, ZHOU Z W. Numerical study on the effects of pressure and temperature distortion of an engine[J]. Gas Turbine Experiment and Research, 2007, 20(4): 41–44,21. doi: 10.3969/j.issn.1672-2620.2007.04.009 [13] 黄顺洲, 胡骏. 组合畸变对某型发动机稳定性的影响[J]. 航空动力学报, 2006, 21(6): 1085–1091.HUANG S Z, HU J. Investigation of the effect of combined distortion on engine stability[J]. Journal of Aerospace Power, 2006, 21(6): 1085–1091. [14] 朱剑鋆, 董葳, 吴锋, 等. 高空台加温试验进气管网传热过程的计算分析[J]. 燃气涡轮试验与研究, 2011, 24(4): 10–14,24. doi: 10.3969/j.issn.1672-2620.2011.04.0044):10-14, 24 ZHU J J, DONG W, WU F, et al. Calculation and analysis of heat transfer process in pipes of altitude test facility[J]. Gas Turbine Experiment and Research, 2011, 24(4): 10–14,24. doi: 10.3969/j.issn.1672-2620.2011.04.004 [15] 侯敏杰, 刘大响, 王惠儒. 温度畸变发生器的设计与实验[J]. 航空动力学报, 2005, 20(3): 361–367. doi: 10.3969/j.issn.1000-8055.2005.03.004HOU M J, LIU D X, WANG H R. Design and experimental study of the inlet temperature distortion generator[J]. Journal of Aerospace Power, 2005, 20(3): 361–367. doi: 10.3969/j.issn.1000-8055.2005.03.004 [16] 曹海峰, 李雪峰, 赵龙. 基于CFD的航空发动机试车台进气加温装置气动性能分析[J]. 燃气涡轮试验与研究, 2019, 32(1): 47–51. doi: 10.3969/j.issn.1672-2620.2019.01.009CAO H F, LI X F, ZHAO L. The aerodynamic performance analysis of inlet heating device of aero-engine test rig based on CFD[J]. Gas Turbine Experiment and Research, 2019, 32(1): 47–51. doi: 10.3969/j.issn.1672-2620.2019.01.009 [17] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 346-366.LIAN X C, WU H. Aeroengine principle[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 346-366. [18] 刘大响, 叶培梁, 胡骏, 等. 航空燃气涡轮发动机稳定性设计与评定技术[M]. 北京: 航空工业出版社, 2004. [19] BRAITHWAITE W M, SOEDER R H. Combined pressure and temperature distortion effects on internal flow of a turbofan engine[R] AIAA 79-1309. doi: 10.2514/6.1979-1309 [20] . 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口总温畸变评定指南: GJB/Z 211-2002[S]. 北京: 中国航空综合技术研究所, 2002. [21] 张宝诚. 航空发动机试验和测试技术[M]. 北京: 北京航空航天大学出版社, 2005: 410-431.ZHANG B C. Aero-engine test and testing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 410-431. -