留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空管道列车流固耦合研究进展及关键技术分析

寇杰 符澄 高兴龙 孙运强

寇杰, 符澄, 高兴龙, 等. 真空管道列车流固耦合研究进展及关键技术分析[J]. 实验流体力学, 2023, 37(3): 37-49 doi: 10.11729/syltlx20220143
引用本文: 寇杰, 符澄, 高兴龙, 等. 真空管道列车流固耦合研究进展及关键技术分析[J]. 实验流体力学, 2023, 37(3): 37-49 doi: 10.11729/syltlx20220143
KOU J, FU C, GAO X L, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 37-49 doi: 10.11729/syltlx20220143
Citation: KOU J, FU C, GAO X L, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 37-49 doi: 10.11729/syltlx20220143

真空管道列车流固耦合研究进展及关键技术分析

doi: 10.11729/syltlx20220143
基金项目: 中国空气动力研究与发展中心设备设计与测试技术研究所青年自主创新科学基金项目
详细信息
    作者简介:

    寇杰:(1994—),男,四川宜宾人,博士后。研究方向:磁浮列车空气动力学。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:koujie@cardc.cn

    通讯作者:

    E-mail:gaoxinlong@cardc.cn

  • 中图分类号: U171;TB79

Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology

  • 摘要: 利用磁悬浮技术、管道内抽真空形成低压运行环境,真空管道列车理论上可以实现超过1000 km/h的运行速度。封闭管道导致气动环境复杂,同时列车悬浮运行使列车运行姿态极易发生改变,列车流固耦合效应明显。为探究真空管道列车流固耦合理论及分析方法,对真空管道列车气动研究进展、轨道列车流固耦合特性研究进展进行了综述,分析了真空管道列车流固耦合关键技术,提出了需要重点发展的真空管道列车流场分析技术、流固耦合分析技术和控制技术,可为真空管道列车流固耦合机理研究提供参考。
  • 图  1  600 km/h速度等级磁浮列车[1]

    Figure  1.  The maglev train at speed of 600 km/h [1]

    图  2  真空管道列车三维计算模型[12]

    Figure  2.  A three-dimensional calculation model for a vacuum pipe train[12]

    图  3  不同管道压力下气动阻力随阻塞比的变化[12]

    Figure  3.  Aerodynamic drag changes with the blockage under different pipeline pressures[12]

    图  4  不同列车速度下气动阻力随阻塞比的变化[12]

    Figure  4.  Aerodynamic drag changes with the blockage under different speeds[12]

    图  5  不同头车形状条件下的气压差[19]

    Figure  5.  Pressure differentials under different header shapes[19]

    图  6  不同尾车形状条件下的气压差[19]

    Figure  6.  Pressure differentials under different trailer shapes[19]

    图  7  封闭管道内气动阻力时域变化曲线[24]

    Figure  7.  A change curve of the aerodynamic drag within the closed pipe[24]

    图  8  真空管道列车试验装置[25]

    Figure  8.  Vacuum pipe train test device[25]

    图  9  真空管道内部等熵流动流场特征分析[30]

    Figure  9.  Analysis of flow field characteristics of isentropic flow in vacuum pipe[30]

    图  10  600 km/h 运行速度下列车尾部马赫数分布[30]

    Figure  10.  Mach number distribution at train trail at speed of 600 km/h[30]

    图  11  车头处压力云图和激波结构图[8]

    Figure  11.  Pressure clouds and shock cluster structure maps at the head of the vehicle[8]

    图  12  车尾处压力云图和激波结构图[8]

    Figure  12.  Pressure clouds and shock cluster structure maps at the end of the vehicle[8]

    图  13  联合仿真求解过程

    Figure  13.  Joint simulation resolution process

    图  14  内嵌式联合仿真求解过程

    Figure  14.  Embedded joint simulation resolution process

    图  15  平衡状态法联合仿真求解过程[54]

    Figure  15.  Joint simulation resolution process in balanced state method[54]

    图  16  无风条件下350 km/h等速交会[57]

    Figure  16.  Same velocity rendezvous at speed of 350 km/h without wind[57]

    图  17  10 m/s侧风条件下350 km/h等速交会 [57]

    Figure  17.  Same velocity rendezvous at speed of 350 km/h with sidewind at speed of 10 m/s[57]

    图  18  头车、中间车和尾车的气动载荷[57]

    Figure  18.  Aerodynamic load of head, middle and tail vehicle[57]

    图  19  运行安全性指标[57]

    Figure  19.  The operational safety factor[57]

    表  1  计算效率比较[54]

    Table  1.   The contrast of computational efficiency[54]

    计算方法计算类型气动计算车辆动力学计算
    每个时间步迭代步数时间迭代总步数总迭代步数迭代计算时间/s总计算时间/s
    离线仿真法 稳态 2000 15
    平衡状态法 瞬态 100 50 5000 50 × 5 265
    交互式联合仿真法 瞬态 20 7500 150000 15
    下载: 导出CSV

    表  2  气动载荷指标比较[54]

    Table  2.   The contrast of aerodynamic load[54]

    计算方法 侧力/kN升力/kN侧滚力矩
    /(kN·m)
    俯仰力矩
    /(kN·m)
    摇头力矩
    /(kN·m)
    离线仿真法41.967.35−9.95−176.11261.99
    平衡状态法50.7812.39−6.07−131.56217.18
    交互联合仿真法52.6112.77−5.88−135.26216.75
    下载: 导出CSV

    表  3  列车运行姿态指标比较[54]

    Table  3.   The contrast of vehicle body attitude[54]

    计算方法 横移量
    /mm
    沉浮量
    /mm
    侧滚角
    /(°)
    俯仰角
    /(°)
    摇头角
    /(°)
    离线仿真法68.0710.490.88−0.18880.2179
    平衡状态法87.1617.711.47−0.14020.1779
    交互联合仿真法89.9918.111.52−0.14470.1804
    下载: 导出CSV
  • [1] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [2] 沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094

    SHEN T, MA Z W, DU X J, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094
    [3] 沈志云. 高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J]. 交通运输工程学报, 2001, 1(1): 1–6. doi: 10.3321/j.issn:1671-1637.2001.01.001

    SHEN Z Y. Dynamic interaction of high speed maglev train on girders and its comparison with the case in ordinary high speed railways[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 1–6. doi: 10.3321/j.issn:1671-1637.2001.01.001
    [4] 苏靖棋. 超级高铁(Hyperloop)可行性分析[J]. 现代城市轨道交通, 2020(5): 114–118.
    [5] PLAVEC M, MICHELBERGER F. Eine analyse des hyperloop-konzepts[J]. Der Eisenbahn Ingenieur, 2020(11): 52–55.
    [6] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [7] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [8] 周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/jme.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/jme.2020.02.086
    [9] ZHOU P, ZHANG J Y, et al. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum, 2020, 173: 109142. doi: 10.1016/j.vacuum.2019.109142
    [10] 周晓, 张殿业, 张耀平. 真空管道中阻塞比对列车空气阻力影响的数值研究[J]. 真空科学与技术学报, 2008, 28(6): 535–538. doi: 10.13922/j.cnki.cjovst.2008.06.011

    ZHOU X, ZHANG D Y, ZHANG Y P. Numerical simulation of blockage rate and aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 535–538. doi: 10.13922/j.cnki.cjovst.2008.06.011
    [11] KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
    [12] 刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137

    LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137
    [13] 刘加利, 张继业, 张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03

    LIU J L, ZHANG J Y, ZHANG W H. Impacts of pressure, blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03
    [14] 王博. 真空管道高温超导磁悬浮车气动特性研究[D]. 成都: 西南交通大学, 2017.

    WANG B. Study on aerodynamic characteristics of evacuated tube transport-high temperature superconducting maglev[D]. Chengdu: Southwest Jiaotong University, 2017.
    [15] 黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [16] 王志飞, 那日苏, 李樊, 等. 低真空管道磁浮系统结构参数优化理论研究[J]. 真空科学与技术学报, 2020, 40(1): 27–32. doi: 10.13922/j.cnki.cjovst.2020.01.06

    WANG Z F, NA R S, LI F, et al. Design optimization of vacuum tube maglev transport conditions: a theoretical and orthogonal experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(1): 27–32. doi: 10.13922/j.cnki.cjovst.2020.01.06
    [17] 冯瑞龙, 王志飞, 冯海全, 等. 基于RBF和BP神经网络的低真空管道高速列车气动阻力预测对比研究[J]. 真空科学与技术学报, 2020, 40(9): 827–832. doi: 10.13922/j.cnki.cjovst.2020.09.05

    FENG R L, WANG Z F, FENG H Q, et al. Aerodynamic resistance of train running in vacuum tube: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(9): 827–832. doi: 10.13922/j.cnki.cjovst.2020.09.05
    [18] 陈绪勇. 真空管道磁悬浮列车空气动力学问题仿真分析[D]. 成都: 西南交通大学, 2013.

    CHEN X Y. Aerodynamic simulation analysis of evacuated tube maglev trains[D]. Chengdu: Southwest Jiaotong University, 2013.
    [19] CHEN X Y, ZHAO L F, MA J Q, et al. Aerodynamic simulation of evacuated tube maglev trains with different streamlined designs[J]. Journal of Modern Transportation, 2012, 20(2): 115–120. doi: 10.1007/BF03325788
    [20] ZHANG X H, JIANG Y, LI T. Effect of streamlined nose length on the aerodynamic performance of a 800 km/h evacuated tube train[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 67–76. doi: 10.32604/fdmp.2020.07776
    [21] PANDEY B K, MUKHERJEA S K. Aerodynamic simulation of evacuated tube transport trains with suction at tail[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. 2015. doi: 10.1115/IMECE2014-37904
    [22] YANG Y, WANG H Y, BENEDICT M, et al. Aerodynamic simulation of high-speed capsule in the hyperloop system[C]//Proc of the 35th AIAA Applied Aerodynamics Conference. 2017: 3741. doi: 10.2514/6.2017-3741
    [23] ZHANG Y P. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation[J]. Journal of Modern Transportation, 2012, 20(1): 44–48. doi: 10.1007/BF03325776
    [24] BI H Q, LEI B. Aerodynamic characteristics of evacuated tube high-speed train[C]//Proc of the International Conference on Transportation Engineering 2009, Southwest Jiaotong University. 2009: 3736-3741. doi: 10.1061/41039(345)616
    [25] MA J Q, ZHOU D J, ZHAO L F, et al. The approach to calculate the aerodynamic drag of maglev train in the evacuated tube[J]. Journal of Modern Transportation, 2013, 21(3): 200–208. doi: 10.1007/s40534-013-0019-6
    [26] MOSSI M, SIBILLA S. Swissmetro: aerodynamic drag and wave effects in tunnels under partial vacuum[C]// Proceedings of the 17th International Conference on Magnetically Levitated Systems and Linear Drives. 2002: 156-163.
    [27] MOSSI M, ROSSEL P. Swissmetro: A revolution in the high-speed passenger transport systems[C]//Proc of the 1st Swiss Transport Research Conference. 2001: 1-16.
    [28] LLUESMA-RODRÍGUEZ F, GONZÁLEZ T, HOYAS S. CFD simulation of a hyperloop capsule inside a closed environment[J]. Results in Engineering, 2021, 9: 100196. doi: 10.1016/j.rineng.2020.100196
    [29] JANG K S, LE T T G, KIM J H. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system[J]. Aerospace Science and Technology, 2021, 117: 106970. doi: 10.1016/j.ast.2021.106970
    [30] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [31] OH J S, KANG T H, HAM S K, et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies, 2019, 12(3): 518. doi: 10.3390/en12030518
    [32] GILLANI S A, PANIKULAM V P, SADASIVAN S, et al. CFD analysis of aerodynamic drag effects on vacuum tube trains[J]. Journal of Applied Fluid Mechanics, 2019, 12(1): 303–309. doi: 10.29252/jafm.75.253.29091
    [33] KANG H M, JIN Y M, KWON H B, et al. A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics[J]. International Journal of Aeronautical and Space Sciences, 2017, 18(4): 614–622. doi: 10.5139/ijass.2017.18.4.614
    [34] ZHOU P, ZHANG J Y, LI T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train[J]. International Journal of Rail Transportation, 2020, 8(1): 27–44. doi: 10.1080/23248378.2019.1675191
    [35] BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020(1): 579–596. doi: 10.1186/s42774-020-00053-8
    [36] ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61–70. doi: 10.1016/j.jweia.2019.04.003
    [37] NIU J Q, SUI Y, YU Q J, et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100–111. doi: 10.1016/j.jweia.2019.04.001
    [38] SUI Y, NIU J Q, YUAN Y P, et al. An aerothermal study of influence of blockage ratio on a supersonic tube train system[J]. Journal of Thermal Science, 2022, 31(2): 529–540. doi: 10.1007/s11630-020-1281-7
    [39] NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
    [40] 于梦阁, 张继业, 张卫华. 随机风作用下高速列车的非定常气动载荷[J]. 机械工程学报, 2012, 48(20): 116–123. doi: 10.3901/JME.2012.20.113

    YU M G, ZHANG J Y, ZHANG W H. Unsteady aerodynamic loads of high-speed trains under stochastic winds[J]. Journal of Mechanical Engineering, 2012, 48(20): 116–123. doi: 10.3901/JME.2012.20.113
    [41] 于梦阁, 张继业, 张卫华. 桥梁上高速列车的强横风运行安全性[J]. 机械工程学报, 2012, 48(18): 104–111. doi: 10.3901/JME.2012.18.104

    YU M G, ZHANG J Y, ZHANG W H. Running safety of high-speed trains on bridges under strong crosswinds[J]. Journal of Mechanical Engineering, 2012, 48(18): 104–111. doi: 10.3901/JME.2012.18.104
    [42] BETTLE J, HOLLOWAY A G L, VENART J E S. A computational study of the aerodynamic forces acting on a tractor-trailer vehicle on a bridge in cross-wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(5): 573–592. doi: 10.1016/S0167-6105(02)00461-0
    [43] 王永冠, 陈康. 横风对高速动车曲线通过性能的影响[J]. 西南交通大学学报, 2005, 40(2): 224–227. doi: 10.3969/j.issn.0258-2724.2005.02.019

    WANG Y G, CHEN K. Effects of crosswinds on curve negotiation of high-speed power cars[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 224–227. doi: 10.3969/j.issn.0258-2724.2005.02.019
    [44] BAKER C J, HEMIDA H, IWNICKI S, et al. Integration of crosswind forces into train dynamic modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2011, 225(2): 154–164. doi: 10.1177/2041301710392476
    [45] THOMAS D, DIEDRICHS B, BERG M, et al. Dynamics of a high-speed rail vehicle negotiating curves at unsteady crosswind[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2010, 224(6): 567–579. doi: 10.1243/09544097jrrt335
    [46] 李田, 张继业, 张卫华. 横风下车辆–轨道耦合动力学性能[J]. 交通运输工程学报, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009

    LI T, ZHANG J Y, ZHANG W H. Coupling dynamics performance of vehicle-track under cross wind[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009
    [47] 杨吉忠, 毕海权, 翟婉明. 基于ALE方法的列车横风绕流动力学分析[J]. 铁道学报, 2009, 31(2): 120–124. doi: 10.3969/j.issn.1001-8360.2009.02.022

    YANG J Z, BI H Q, ZHAI W M. Dynamic analysis of train in cross-winds with the arbitrary Lagrangian-eulerian method[J]. Journal of the China Railway Society, 2009, 31(2): 120–124. doi: 10.3969/j.issn.1001-8360.2009.02.022
    [48] 崔涛, 张卫华, 孙帮成. 高速列车流固耦合振动的研究方法及其应用[J]. 铁道学报, 2013, 35(4): 16–22. doi: 10.3969/j.issn.1001-8360.2013.04.003

    CUI T, ZHANG W H, SUN B C. Research method and application of fluid-solid coupling vibration for high-speed train[J]. Journal of the China Railway Society, 2013, 35(4): 16–22. doi: 10.3969/j.issn.1001-8360.2013.04.003
    [49] LI T, ZHANG J Y, ZHANG W H. An improved algorithm for fluid-structure interaction of high-speed trains under crosswind[J]. Journal of Modern Transportation, 2011, 19(2): 75–81. doi: 10.1007/BF03325743
    [50] 李田, 张继业, 张卫华. 横风下高速列车流固耦合动力学联合仿真[J]. 振动工程学报, 2012, 25(2): 138–145. doi: 10.16385/j.cnki.issn.1004-4523.2012.02.015

    LI T, ZHANG J Y, ZHANG W H. Co-simulation of high-speed train fluid-structure interaction dynamics in crosswinds[J]. Journal of Vibration Engineering, 2012, 25(2): 138–145. doi: 10.16385/j.cnki.issn.1004-4523.2012.02.015
    [51] 李田, 张继业, 李忠继, 等. 基于Fluent与Simpack的高速列车流固耦合联合仿真[J]. 计算力学学报, 2012, 29(5): 675–680. doi: 10.7511/jslx20125006

    LI T, ZHANG J Y, LI Z J, et al. Co-simulation on fluid-structure interaction of high-speed train based on Fluent and Simpack[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 675–680. doi: 10.7511/jslx20125006
    [52] LI T, ZHANG X H, JIANG Y, et al. Aerodynamic design of a subsonic evacuated tube train system[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 121–130. doi: 10.32604/fdmp.2020.07976
    [53] 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都: 西南交通大学, 2012.

    LI T. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu: Southwest Jiaotong University, 2012.
    [54] 李田, 张继业, 张卫华. 高速列车流固耦合的平衡状态方法[J]. 机械工程学报, 2013, 49(2): 95–101. doi: 10.3901/JME.2013.02.095

    LI T, ZHANG J Y, ZHANG W H. Co-simulation of high-speed train fluid-structure interaction based on the equilibrium state[J]. Journal of Mechanical Engineering, 2013, 49(2): 95–101. doi: 10.3901/JME.2013.02.095
    [55] 崔涛. 高速列车流固耦合振动及运行安全性研究[D]. 成都: 西南交通大学, 2011.

    CUI T. Study on fluid-solid coupling vibration and running safety of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2011.
    [56] 崔涛, 张卫华, 张曙光, 等. 列车高速通过站台时的流固耦合振动研究[J]. 中国铁道科学, 2010, 31(2): 50–55.

    CUI T, ZHANG W H, ZHANG S G, et al. Study on the fluid-solid coupling vibration of train passing through platform at high speed[J]. China Railway Science, 2010, 31(2): 50–55.
    [57] 崔涛, 张卫华. 基于姿态变化的列车侧风安全性研究的新方法[J]. 振动与冲击, 2011, 30(10): 143–146, 152. doi: 10.13465/j.cnki.jvs.2011.10.033

    CUI T, ZHANG W H. A new studying method for safety of a train with attitude changing in side wind[J]. Journal of Vibration and Shock, 2011, 30(10): 143–146, 152. doi: 10.13465/j.cnki.jvs.2011.10.033
    [58] 崔涛, 张卫华. 高速列车侧风安全域计算方法[J]. 交通运输工程学报, 2011, 11(5): 42–48. doi: 10.19818/j.cnki.1671-1637.2011.05.007

    CUI T, ZHANG W H. Calculation method of cross wind security domain for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 42–48. doi: 10.19818/j.cnki.1671-1637.2011.05.007
    [59] 崔涛, 张卫华. 基于姿态变化的列车侧风安全性研究[J]. 铁道学报, 2010, 32(5): 25–29. doi: 10.3969/j.issn.1001-8360.2010.05.005

    CUI T, ZHANG W H. Study on safety of train in side wind with changing attitudes[J]. Journal of the China Railway Society, 2010, 32(5): 25–29. doi: 10.3969/j.issn.1001-8360.2010.05.005
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  88
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-01-05
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日