Vehicle aerodynamic sensing technology based on surface distributed pressure
-
摘要: 在大侧风或风切变环境下,高速列车、卡车和轮船等交通工具存在侧翻(倾覆)风险,引发安全事故。针对侧风(横风)或风切变现象,目前主要基于大气宏观环境进行研究、监测和预警,对于交通工具周围随机变化的流动状态及所承受的突变气动载荷往往无法准确感知。本文以厢式卡车为研究对象,提出一种基于表面分布式压力信息的车载气动力实时感知方法,通过测量车身表面分布式压力信息获取特征截面侧倾力矩系数,以此对侧风环境下卡车的侧倾力矩变化趋势进行判断。研究结果表明:车身0.15 L处截面的侧倾力矩系数与模型侧倾力矩系数存在极强的相关性,可作为特征截面对卡车侧倾力矩进行感知并对其变化趋势进行判断;与基于单截面的侧倾力矩感知相比,采用多截面拟合方法的感知结果更为精确,但需在车身上开设更多压力监测孔。Abstract: In the environment of large crosswind or wind shear, the aircraft, high-speed rail, trucks, ships and other vehicles may rollover, which may cause safety accidents. For the crosswind or wind shear phenomenon, the existing technology mainly studies, monitors and gives early warning from the atmospheric macro environment, and often cannot accurately perceive the random aerodynamic load or sudden flow around the vehicle itself. We take the van truck as the research object, and propose a real-time sensing method of on-board aerodynamic force/moment based on the distributed pressure information on the surface. By measuring the distributed pressure on the body surface, the rolling moment coefficient of the characteristic section is obtained, so as to judge the rolling moment of the truck in the crosswind environment. The wind tunnel test results show that the rolling moment coefficient of the pressure tap section located at 0.15 L of the vehicle body is highly related to the rolling moment coefficient of the whole vehicle model, which can be used as a characteristic section to sense and judge its rolling moment, and we also use multiple section fitting to sense the rolling moment, which is more accurate than single section fitting, but needs to monitor the pressure at more positions of the body surface.
-
表 1 应变式天平相关参数
Table 1. Relevant parameters of strain gauge balance
变量 Fx Fy Fz Mx My Mz 范围 165 N 165 N 495 N 15 N·m 15 N·m 15 N·m 精度 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 表 2 不同截面压力积分曲线相关系数(静态)
Table 2. Correlation coefficients of pressure integral curves of sections (static)
β/(°) R 第1截面x/L = 0.15 第2截面x/L = 0.25 第3截面x/L = 0.45 第4截面x/L = 0.65 第5截面x/L = 0.85 −40 ≤ β ≤ 40 0.99 0.96 0.99 0.93 0.74 −40 ≤ β < −26 0.99 0.97 0.85 0.74 −0.90 −26 ≤ β < 26 0.99 0.97 0.99 0.99 0.66 26 ≤ β ≤ 40 0.98 0.94 0.90 0.88 −0.79 表 3 不同截面压力积分曲线相关系数(准动态)
Table 3. Correlation coefficients of pressure integral curves of Sections (quasi dynamic)
β/(°) R 第1截面x/L = 0.15 第2截面x/L = 0.25 第3截面x/L = 0.45 第4截面x/L = 0.65 第5截面x/L = 0.85 −40 ≤ β ≤ 40 0.98 0.96 0.99 0.94 0.69 −40 ≤ β < −26 0.73 0.71 0.53 0.63 −0.48 −26 ≤ β < 26 0.98 0.97 0.99 0.99 0.61 26 ≤ β ≤ 40 0.75 0.61 0.57 0.32 −0.40 表 4 不同测压孔数量下的压力积分曲线相关系数(静态和准动态)
Table 4. Correlation coefficients of pressure integral curves with different pressure taps (static and quasi dynamic)
β/(°) R(静态横摆角下) R(准动态横摆角下) 第1截面
(9孔)第1截面
(6孔)第1截面
(9孔)第1截面
(6孔)−40≤β≤40 0.99 0.99 0.98 0.98 −40≤β<−26 0.99 0.99 0.75 0.75 −26≤β<26 0.99 0.99 0.98 0.97 26≤β≤40 0.98 0.99 0.73 0.73 表 5 各拟合方法的拟合系数
Table 5. Weight coefficients of each fitting method formula
拟合方法 拟合系数 a b c d e 第1种拟合方法
(第1~5截面)0.1841 0.0021 0.3577 0.1485 0.4863 第2种拟合方法
(第1、3~5截面)0.1846 0 0.3542 0.1573 0.4957 第3种拟合方法
(第1、3、5截面)0.1836 0 0.4622 0 0.3487 表 6 不同拟合方法下的相关系数
Table 6. Correlation coefficients of pressure integral curves of multiple section fittings
β/(°) R 第1种拟合方法
(第1~5截面)第2种拟合方法
(第1、3~5截面)第3种拟合方法
(第1、3、5截面)−40~40 0.99 0.99 0.99 −40~−26 0.99 0.99 0.98 −26~26 0.99 0.99 0.99 26~40 0.98 0.98 0.97 表 7 不同数量测压孔下第1、3、5截面压力积分曲线相关系数
Table 7. Correlation coefficients of pressure integral curves of section 1, 3, 5 fittings
β/(°) R 第1、3、5截面(35孔) 第1、3、5截面(18孔) −40~40 0.99 0.99 −40~−26 0.98 0.98 −26~26 0.99 0.99 26~40 0.97 0.97 -
[1] 陈丰, 彭浩荣, 马小翔, 等. 侧风作用下货车驾驶员反应行为模型[J]. 同济大学学报(自然科学版), 2020, 48(5): 702–709. doi: 10.11908/j.issn.0253-374x.19325CHEN F, PENG H R, MA X X, et al. Model of driving behavior of truck driver under crosswind[J]. Journal of Tongji University (Natural Science), 2020, 48(5): 702–709. doi: 10.11908/j.issn.0253-374x.19325 [2] 许卞. 商用车侧向风影响下的主动转向控制研究[D]. 秦皇岛: 燕山大学, 2020.XU B. Research on active steering control of commercial vehicles under the influence of lateral wind[D]. Qinhuangdao: Yanshan University, 2020. doi: 10.27440/d.cnki.gysdu.2020.001065 [3] GOHLKE M, BEAUDOIN J F, AMIELH M, et al. Experimental analysis of flow structures and forces on a 3D-bluff-body in constant cross-wind[J]. Experiments in Fluids, 2007, 43(4): 579–594. doi: 10.1007/s00348-007-0341-z [4] JEFF H, DAVID F, MARTIN P, et al. The effect of a sheared crosswind flow on car aerodynamics[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2017, 10(1): 278–285. doi: 10.4271/2017-01-1536 [5] 刘高峰. 侧风作用下厢式货车气动特性研究[D]. 长春: 吉林大学, 2006.LIU G F. Study on aerodynamic characteristics of box van with crosswind[D]. Changchun: Jilin University, 2006. [6] 于伟靖. 侧风下类车体瞬态流动结构研究[D]. 长春: 吉林大学, 2017.YU W J. Investigation on unsteady flow structure around a simplified car under the crosswind[D]. Changchun: Jilin University, 2017. [7] 刘立宁. 侧风环境中不同运动状态下厢式货车瞬态气动特性研究[D]. 济南: 山东大学, 2019.LIU L N. Transient aerodynamic characteristics of vans under different motion conditions in crosswind[D]. Jinan: Shandong University, 2019. [8] UFFELMANN F. Influence of aerodynamics and suspension on the cross-wind behaviour of passenger cars - theoretical investigation under consideration of the driver's response[J]. Vehicle System Dynamics, 1986, 15(s1): 568–581. doi: 10.1080/00423118608969163 [9] 谷正气, 赵荣远, 杨易, 等. 汽车气动造型在侧风稳定性中的应用研究[J]. 湖南大学学报(自然科学版), 2008, 35(9): 44–47.GU Z Q, ZHAO R Y, YANG Y, et al. Research on impact of vehicle aerodynamic models on cross-wind stability[J]. Journal of Hunan University (Natural Sciences), 2008, 35(9): 44–47. [10] 罗泽轩. 基于瞬态耦合方法侧风环境下汽车高速气动稳定性研究[D]. 长沙: 湖南大学, 2017.LUO Z X. Study on high-speed aerodynamic stability of automobile in crosswind environment based on transient coupling method[D]. Changsha: Hunan University, 2017. [11] 原尧. 基于双向耦合法的侧风下汽车高速气动稳定性研究[D]. 岳阳: 湖南理工学院, 2021.YUAN Y. Study on high-speed aerodynamic stability of automobile under crosswind based on two-way coupling method[D]. Yueyang: Hunan Institute Of Science And Technology, 2021. doi: 10.27906/d.cnki.gnghy.2021.000231 [12] 汪怡平, 张子一. 应用动态耦合法的车辆侧风稳定性研究[J]. 机械设计与制造, 2022(6): 59–64. doi: 10.19356/j.cnki.1001-3997.2022.06.036WANG Y P, ZHANG Z Y. Dynamic coupling analysis of the crosswind stability of a vehicle[J]. Machinery Design & Manufacture, 2022(6): 59–64. doi: 10.19356/j.cnki.1001-3997.2022.06.036 [13] SAMPSON D J M, CEBON D. Active roll control of single unit heavy road vehicles[J]. Vehicle System Dynamics, 2003, 40(4): 229–270. doi: 10.1076/vesd.40.2.229.16540 [14] MUNIANDY V, SAMIN P M, JAMALUDDIN H. Application of a self-tuning fuzzy PI–PD controller in an active anti-roll bar system for a passenger car[J]. Vehicle System Dynamics, 2015, 53(11): 1641–1666. doi: 10.1080/00423114.2015.1073336 [15] 梁宝钰, 汪怡平, 刘珣, 等. 基于滑模理论的高速车辆侧风稳定性控制研究[J]. 汽车工程, 2022, 44(1): 123–130. doi: 10.19562/j.chinasae.qcgc.2022.01.015LIANG B Y, WANG Y P, LIU X, et al. Study on crosswind stability control of high-speed vehicle based on sliding mode theory[J]. Automotive Engineering, 2022, 44(1): 123–130. doi: 10.19562/j.chinasae.qcgc.2022.01.015 [16] PFEIFFER J, KING R. Linear parameter-varying active flow control for a 3D bluff body exposed to cross-wind gusts[C]//Proc of the 32nd AIAA Applied Aerodynamics Conference. 2014: 2406. doi: 10.2514/6.2014-2406 [17] ENGLAR R J. Advanced aerodynamic devices to improve the performance, economics, handling and safety of heavy vehicles[C]//Proc of the SAE International Government / Industry Meeting. 2001. doi: 10.4271/2001-01-2072 [18] 王小亮. 高速铁路大风监测与预警系统设计与实现[D]. 北京: 中国科学院大学, 2014.WANG X L. Design and realization of the strong wind monitoring and prediction system for high-speed railway[D]. Beijing: University of Chinese Academy of Sciences, 2014. [19] 牛迪宇. 江苏省高速公路强风和强横风发生规律及个例数值模拟[D]. 南京: 南京信息工程大学, 2017.NIU D Y. Occurrence law and numerical simulation of strong wind and strong crosswind on expressways in Jiangsu Province[D]. Nanjing: Nanjing University of Information Science & Technology, 2017. [20] 王全峰. 浅析高速公路横风监测预警系统的设计与构建[J]. 公路交通科技(应用技术版), 2019, 15(7): 307–309. [21] 张景镇. 空速管的型式和机头空速管的位差估算[J]. 南京航空航天大学学报, 1979, 11(1): 223–231.ZHANG J Z. Useful types of the pitot-static airspeed probe and a method to compute the position error of the static probe fixed on the aircraft nose[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1979, 11(1): 223–231. [22] TREASTER A L, YOCUM A M. The calibration and application of five-hole probes[R]. Pennsylvania State Univ University Park Applied Research Laboratory. 1978. [23] 李少泽. 气动探针在飞行测控中的应用[D]. 南京: 南京航空航天大学, 2016.LI S Z. The application of seven-hole probe in the flight test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [24] 李子凌, 张耿, 王泽坤, 等. 应用于飞翼布局飞行器的FADS系统的设计实现[J]. 自动化应用, 2016(5): 72–74. doi: 10.3969/j.issn.1674-778X.2016.05.034 [25] 陈尹, 顾蕴松, 孙之骏, 等. 基于翼面压力的飞行器气动力感知技术与自由飞验证[J]. 航空学报, 2021, 42(3): 124138. doi: 10.7527/S1000-6893.2020.24138CHEN Y, GU Y S, SUN Z J, et al. Aerodynamic perception from distributed pressure and free flight test[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124138. doi: 10.7527/S1000-6893.2020.24138 [26] 张喆. 侧风作用下重型载货汽车气动特性与稳定性的联合研究[D]. 长春: 吉林大学, 2012.ZHANG Z. Joint research on heavy-duty truck aerodynamic characteristics stability under crosswind effects[D]. Changchun: Jilin University, 2012. [27] 秦鹏. 侧风下重型商用货车气动特性的模拟研究[D]. 长春: 吉林大学, 2012.QIN P. Research on aerodynamics characteristics of heavy-duty truck travelling under cross-wind[D]. Changchun: Jilin University, 2012. -