Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array
-
摘要: 以NACA 65(12)–10独立基准叶片为对象,使用线性传声器阵列和SODIX(SOurce DIrectivity modeling in the cross-spectral matriX)方法对基准叶片前缘噪声指向性分布特征及波浪前缘对叶片前缘噪声的影响进行了实验研究。开发了SODIX数据处理程序并进行了数值仿真验证,结果表明:不同指向角下计算结果的最大误差不超过0.26 dB。在半消声室内,利用由31个传声器组成的非均匀分布优化阵列,对NACA 65(12)–10独立基准叶片和仿生学叶片的前缘噪声开展了参数化声学实验。结果表明:在40° ~ 142°指向角测量范围内,基准叶片前缘噪声指向性符合典型偶极子声源特征,峰值在130°指向角附近;随着频率升高,基准叶片前缘噪声指向性产生了显著的“波瓣”现象,频率越高,“波瓣”越多。进一步研究表明:不同波长和幅值的前缘构型都可以有效降低指向角测量范围内的前缘噪声;与波浪前缘的波长相比,波浪前缘的幅值对前缘噪声的影响更为显著,特别是在90° ~ 120°指向角范围内,A30W20叶型的降噪量可达7.71 dB。Abstract: Taking the NACA65(12)–10 blade as the object, a linear microphone array based on the SODIX (SOurce DIrectivity modeling in the cross-spectral matriX) method is used to study the leading-edge (LE) noise directivity of the baseline and the effect of the wavy LE on the LE noise directivity. First, a SODIX data processing program was developed, and the program was validated by numerical simulation. The validation results show that the data processing program has a good accuracy with an error less than 0.26 dB. Then, a linear array with 31 microphones is designed to identify the LE noise directivity of the baseline and the wavy LE blade experimentally in a semi-anechoic chamber. Within the measured degree range of 40° – 142°, the directivity of LE noise shows a characteristic of typical dipole sound sources with a peak occurs at 130°. Besides, the higher the frequency is, the more obvious of the ‘lobe’ distribution of the LE noise directivity is. Further analysis shows that the wavy LE with various amplitudes and wavelengths especially with larger amplitudes can reduce LE noise in measured angle ranges especially among 90° – 120°. And the maximum value is 7.71 dB for A30W20.
-
Key words:
- blade /
- aerodynamic noise /
- directivity /
- leading edge noise /
- microphone array /
- cross spectral matrix /
- SODIX /
- noise reduction
-
表 1 扫描区域声源点数量选取
Table 1. the number of sound sources
1/3倍频程/Hz 声源点数量J/个 4000及以下 17 5000 21 6300 26 8000 33 表 2 波浪前缘设计参数
Table 2. Design parameters of wavy LE
叶型 A/c W/c 基准叶型 0 0 A10W20 0.1 0.2 A20W20 0.2 0.2 A30W20 0.3 0.2 A30W10 0.3 0.1 A30W30 0.3 0.3 表 3 不同流速下90° ~ 120°指向角范围内的最优降噪角和降噪量
Table 3. The optimal noise reduction angle and amount of wavy LE blade under different incoming flow velocities in the direction angle range of 90° – 120°
来流速度 叶型 最优降噪角 降噪量 34.9 m/s A10W20 96° 3.20 dB A20W20 5.97 dB A30W20 7.17 dB 59.4 m/s A10W20 110° 3.36 dB A20W20 5.97 dB A30W20 6.94 dB 83.6 m/s A10W20 105° 2.32 dB A20W20 5.85 dB A30W20 7.71 dB -
[1] POWELL A. On the aerodynamic noise of a rigid flat plate moving at zero incidence[J]. The Journal of the Acoustical Society of America, 1959, 31(12): 1649–1653. doi: 10.1121/1.1907674 [2] CRIGHTON D G, LEPPINGTON F G. Scattering of aerodynamic noise by a semi-infinite compliant plate[J]. Journal of Fluid Mechanics, 1970, 43(4): 721–736. doi: 10.1017/s0022112070002690 [3] CRIGHTON D G. Radiation from vortex filament motion near a half plane[J]. Journal of Fluid Mechanics, 1972, 51(2): 357–362. doi: 10.1017/s0022112072001235 [4] LEVINE H. Acoustical diffraction radiation[J]. Journal of the Acoustical Society of America, 1972, 52(4A): 1092. doi: 10.1121/1.1913217 [5] HOWE M S. The generation of sound by aerodynamic sources in an inhomogeneous steady flow[J]. Journal of Fluid Mechanics, 1975, 67(3): 597–610. doi: 10.1017/s0022112075000493 [6] HOWE M S. The influence of vortex shedding on the generation of sound by convected turbulence[J]. Journal of Fluid Mechanics, 1976, 76(4): 711–740. doi: 10.1017/s0022112076000864 [7] CHASE D M. Noise radiated from an edge in turbulent flow[J]. AIAA Journal, 1975, 13(8): 1041–1047. doi: 10.2514/3.60502 [8] HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration, 1978, 61(3): 437–465. doi: 10.1016/0022-460X(78)90391-7 [9] MIGLIORE P, OERLEMANS S. Wind tunnel aeroacoustic tests of six airfoils for use on small wind turbines[J]. Journal of Solar Energy Engineering, 2004, 126(4): 974–985. doi: 10.1115/1.1790535 [10] 纪良. 叶轮机宽频噪声产生机理和抑制方法的实验及数值研究[D]. 西安: 西北工业大学, 2016.JI L. Experimental and numerical study on mechanism and suppression method of turbo-machinery broadband noise[D]. Xi’an: Northwestern Polytechnical University, 2016. [11] BILLINGSLEY J, KINNS R, et al. The acoustic tele-scope[J]. Journal of Sound and Vibration, 1976, 48(4): 485–510. doi: 10.1016/0022-460X(76)90552-6 [12] KINNS R. Binaural source location[J]. Journal of Sound and Vibration, 1976, 44(2): 275–289. doi: 10.1016/0022-460x(76)90774-4 [13] SIJTSMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics, 2007, 6(4): 357–374. doi: 10.2514/6.2007-3436 [14] BROOKS T, HUMPHREYS W. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)[C]//Proc of the 12th AIAA/CEAS Aero-acoustics Conference (27th AIAA Aeroacoustics Conferen-ce). 2006. . [15] DOUGHERTY R. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. . [16] SUZUKI T. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources[J]. Journal of Sound and Vibration, 2011, 330(24): 5835–5851. doi: 10.1016/j.jsv.2011.05.021 [17] MICHEL U, BARSIKOW B, HAVERICH B, et al. Investigation of airframe and jet noise in high-speed flight with a microphone array[C]//Proc of the 3rd AIAA/CEAS Aeroacoustics Conference. 1997. . [18] HARKER B M, GEE K L, NEILSEN T B, et al. Phased-array measurements of full-scale military jet noise[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014. . [19] JAEGER S, BURNSIDE N, SODERMAN P, et al. Microphone array assessment of an isolated, 26%-scale, high-fidelity landing gear[C]//Proc of the 8th AIAA/CEAS Aero-acoustics Conference & Exhibit. 2002. . [20] QUAYLE A, DOWLING A, BABINSKY H, et al. Phased array measurements from landing gear models[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007. . [21] OERLEMANS S, SIJTSMA P, LÓPEZ B M. Location and quantification of noise sources on a wind turbine[J]. Journal of Sound and Vibration, 2007, 299(4-5): 869–883. doi: 10.1016/j.jsv.2006.07.032 [22] RAMACHANDRAN R, RAMAN G. Evaluation of various beamforming algorithms for wind turbine noise measurement[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. . [23] QIAO W Y, JI L, TONG F, et al. Separation and quantification of airfoil LE-and TE-noise source with microphone array[C]//Proc of the 7th Berlin Beamforming Conference. 2018: 5-8. [24] CHEN W J, MAO L Q, XIANG K S, et al. The application of a linear microphone array in the quantitative evaluation of the blade trailing-edge noise reduction[J]. Applied Sciences, 2021, 11(2): 572. doi: 10.3390/app11020572 [25] SILLER H, MICHEL U, ARNOLD F. Investigation of aero-engine core-noise using a phased microphone array[C]//Proc of the 7th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2001. . [26] BLACODON D, ÉLIAS G. Level estimation of extended acoustic sources using an array of microphones[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. . [27] BLACODON D, ÉLIAS G. Level estimation of extended acoustic sources using a parametric method[J]. Journal of Aircraft, 2004, 41(6): 1360–1369. doi: 10.2514/1.3053 [28] MICHEL U, FUNKE S. Noise source analysis of an aeroengine with a new inverse method SODIX[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. [29] SILLER H, BASSETTI A, DAVIES S et al. Investigation of the noise emission of the V2500 engine of an A320 aircraft during ground tests with a line array and SODIX[C]//Proc of the 5th Berlin beamforming conference. 2014: 134. [30] SILLER H A, OERTWIG S. Localization and far field extrapolation of acoustic sources from wind tunnel experiments for jet engine installation noise[C]//Proc of the 2018 AIAA/CEAS Aeroacoustics Conference. 2018. . [31] OERTWIG S, SCHUMACHER T, SILLER H A, et al. Extension of the source localization method SODIX for coherent sound sources[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021. . [32] MORÉ J J, GARBOW B S, HILLSTROM K E. User guide for MINPACK-1[R]. ANL-80-74, 1980. [33] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction[R]. NASA-RP-1218, 1989. [34] ARINA R, FERRERO A. Data-driven aeroacoustic modelling: trailing-edge noise[C]//Proc of the AIAA Avi-ation 2021 Forum, Virtual Event. 2021. . [35] AMIET R K. Acoustic radiation from an airfoil in a turbulent stream[J]. Journal of Sound and Vibration, 1975, 41(4): 407–420. doi: 10.1016/S0022-460X(75)80105-2 -