Research on stagnation point heat flux measurement methods of the sharp leading edge model in arc-heated wind tunnel test
-
摘要: 基于电弧风洞试验中尖前缘模型驻点热流的测量需求,发展了一种适用于半径R = 2 mm尖前缘模型的曲面零点量热计和相应的热流测量方法。对装配有3个曲面零点量热计和2个测压孔的前缘模型开展了辐射热流标定和电弧风洞试验考核。结果表明:新发展的曲面零点量热计能够获得典型的一维半无限大体假设模型的温升曲线,不同状态下热流稳定、线性度好,使用前需通过热流标定获取热流修正系数。测量了4个不同的电弧风洞来流状态:同一来流状态下,前缘模型上3个曲面零点量热计的热流测量值最大偏差小于10%,2个压力测点的测量值最大偏差小于5%;3个热流测点的热流平均值与数值计算结果比较最大偏差小于9%,2个压力测点的压力平均值与数值计算结果比较最大偏差小于8%。表明新发展的曲面零点量热计和热流测量方法具有较好的测量准确度,可用于半径R = 2 mm尖前缘模型的驻点热流测量。Abstract: Based on the demand of stagnation point heat flux measurement on the sharp leading edge model in the arc-heated wind tunnel test, a kind of curved null-point calorimeter and the corresponding heat flux measurement methods are developed for a leading edge model with radius R = 2 mm. Radiation heat flux calibration and arc-heated wind tunnel tests are carried out for the leading edge model equipped with 3 curved null-point calorimeters and 2 pressure ports. The results show that the newly developed curved null-point calorimeter can obtain the temperature curve of the typical one-dimensional semi-infinite model. The heat flux curve calculated by the temperature curve is stable and the heat flux values are linear under different states. The correction coefficient should be obtained by heat flux calibration before each null-point calorimeter is used. Heat flux and pressure of the sharp leading edge model are measured in four different flow states of the arc-heated wind tunnel test. In the same flow state, the maximum deviation of heat flux measured by 3 curved null-point calorimeters in the leading edge model is less than 10%, and the maximum deviation of pressure measured by 2 pressure ports is less than 5%. The maximum deviation between the mean value of 3 curved null-point calorimeters and the numerical value is less than 9%, and the maximum deviation between the mean value of 2 pressure ports and the numerical value is less than 8%. It indicates that the newly developed curved null-point calorimeter and heat flux measurement methods have good measurement accuracy and can be used to measure stagnation point heat flux of the leading edge model with radius R = 2 mm.
-
表 1 不同状态前缘热流和压力测量值
Table 1. Heat flux and pressure in different states
状态 来流总压/kPa 来流总焓/(kJ·kg−1) 前缘热流/(MW·m−2) 前缘压力/kPa q1 q2 q3 p1 p2 1 1136 3220 7.87 8.75 8.82 183 168 2 2112 3160 12.6 11.6 13.9 323 294 3 2044 3300 13.5 12.1 14.1 319 289 4 1159 3360 8.82 9.02 9.22 193 181 表 2 不同网格计算结果
Table 2. Calculation results by different grids
网格 第一层网格高度/mm 前缘驻点热流/(MW·m−2) 10000步 15000步 20000步 Grid1 0.01 7.6706 7.6242 7.6489 Grid2 0.005 7.7082 7.7082 7.7082 Grid3 0.001 7.6588 7.6588 7.6588 -
[1] 张友华, 陈连忠, 杨汝森, 等. 高超飞行器尖前缘材料发展及相关气动热试验[J]. 宇航材料工艺, 2012, 42(5): 1–4. doi: 10.3969/j.issn.1007-2330.2012.05.001ZHANG Y H, CHEN L Z, YANG R S, et al. Development and aero-heating tests of sharp leading edge in hypersonic vehicles[J]. Aerospace Materials & Technology, 2012, 42(5): 1–4. doi: 10.3969/j.issn.1007-2330.2012.05.001 [2] MENG Z W, FAN X Q, XIONG B, et al. Investigation of aerodynamic heating in V-shaped cowl-lip of the inward turning inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(8): 2792–2801. doi: 10.1177/0954410018787137 [3] CECERE A, SAVINO R, ALLOUIS C, et al. Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions[J]. International Journal of Heat and Mass Transfer, 2015, 91: 747–755. doi: 10.1016/j.ijheatmasstransfer.2015.08.029 [4] BAO W, ZONG Y H, CHANG J T, et al. Effect of structural factors on maximum aerodynamic heat flux of strut leading surface[J]. Applied Thermal Engineering, 2014, 69(1-2): 188–198. doi: 10.1016/j.applthermaleng.2013.11.068 [5] 朱晓军, 李锋, 欧东斌, 等. 典型部件疏导式热防护试验技术研究[J]. 实验力学, 2020, 35(4): 681–687. doi: 10.7520/1001-4888-18-186ZHU X J, LI F, OU D B, et al. Investigation on testing technology of typical component dredging thermal protection[J]. Journal of Experimental Mechanics, 2020, 35(4): 681–687. doi: 10.7520/1001-4888-18-186 [6] 周书培, 王良明. 再入弹头外形防热优化设计仿真[J]. 计算机仿真, 2019, 36(1): 92–96. doi: 10.3969/j.issn.1006-9348.2019.01.019ZHOU S P, WANG L M. Simulation of heat-resistant optimization design for re-entry warhead shape[J]. Computer Simulation, 2019, 36(1): 92–96. doi: 10.3969/j.issn.1006-9348.2019.01.019 [7] SHEELEY J. Arc heated wind tunnel failure prediction using artificial neural networks[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-898 [8] 杨远剑, 陈德江, 赵文峰, 等. 电弧风洞转动部件动密封试验[J]. 空气动力学学报, 2017, 35(6): 828–831.YANG Y J, CHEN D J, ZHAO W F, et al. Seal complementation test for rotatable parts in arc heated wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(6): 828–831. [9] NAWAZ A, GORBUNOV S, TERRAZAS-SALINAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[C]//Proc of the Proceedings of the 43rd AIAA Thermophysics Conference. 2012. doi: 10.2514/6.2012-3186 [10] 朱新新, 杨庆涛, 王辉, 等. 塞块式量热计隔热结构的改进与试验分析[J]. 实验流体力学, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071ZHU X X, YANG Q T, WANG H, et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071 [11] 陈德江, 王国林, 曲杨, 等. 气动热试验中稳态热流测量技术研究[J]. 实验流体力学, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015CHEN D J, WANG G L, QU Y, et al. The research of the steady-state heat-flux measurement technique for aerothermodynamic experiment[J]. Experiments and Measurements in Fluid Mechanics, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015 [12] ZHOU W X, WANG D, BAO W, et al. Experimental method study on heat flux measurement on sharp leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(11): 2055–2065. doi: 10.1177/0954410013513567 [13] 许考, 陈连忠, 董永晖, 等. 电弧风洞内三维翼冷壁热流测量的归一化研究[J]. 导弹与航天运载技术, 2014(1): 17–20.XU K, CHEN L Z, DONG Y H, et al. Normalization study on cold-wall heat flux measurement of three dimension wings in arc wind tunnel[J]. Missiles and Space Vehicles, 2014(1): 17–20. [14] 张杨, 贾广森, 沙心国, 等. 尖前缘驻点热流精细化测量研究[J]. 实验流体力学, 2019, 33(6): 59–64. doi: 10.11729/syltlx20180112ZHANG Y, JIA G S, SHA X G, et al. Precise stagnation point heat flux measurement technique of sharp leading edges[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 59–64. doi: 10.11729/syltlx20180112 [15] 秦峰, 何川, 曾磊, 等. 驻点热流测量试验技术研究[J]. 西南交通大学学报, 2013, 48(6): 1072–1077. doi: 10.3969/j.issn.0258-2724.2013.06.016QIN F, HE C, ZENG L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1072–1077. doi: 10.3969/j.issn.0258-2724.2013.06.016 [16] BECK J V, HURWICZ H. Effect of thermocouple cavity on heat sink temperature[J]. Journal of Heat Transfer, 1960, 82(1): 27–36. doi: 10.1115/1.3679876 [17] LÖHLE S, BATTAGLIA J L, JULLIEN P, et al. Improvement of high heat flux measurement using a null-point calorimeter[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 76–81. doi: 10.2514/1.30092 [18] 朱新新, 王辉, 彭海波, 等. 一种高辐照度热流传感器标定装置: CN213422482U[P]. 2021-06-11.ZHU X X, WANG H, PENG H B, et al. Calibration device for high-irradiance heat flow sensor: CN213422482U[P]. 2021-06-11. [19] MURTHY A V, TSAI B K, SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(2): 293–305. doi: 10.6028/jres.105.033 [20] 朱新新, 王辉, 杨庆涛, 等. 弧光灯热流标定系统的光学设计[J]. 光学学报, 2016, 36(11): 234–240.ZHU X X, WANG H, YANG Q T, et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica, 2016, 36(11): 234–240. [21] ASTM Committee. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM E 637-2005[S]. United States: American Society for Testing and Materials, 2005: 1-16. [22] 朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11. doi: 10.11823/j.issn.1674-5795.2018.04.02ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11. doi: 10.11823/j.issn.1674-5795.2018.04.02 -