Propagation characteristics of dynamic feature in transonic cavity shear layer
-
摘要: 开式空腔流动发生时剪切层内旋涡运动与腔内前传声波相互作用,引发空腔自持振荡现象。针对长深比为7的开式空腔,通过脉动压力测试技术,在马赫数0.9来流条件下开展腔内剪切层动态特征试验研究,综合利用频谱分析和互相关分析手段,揭示了剪切层动态特征的发展机制及模态噪声的传播规律。结果表明:剪切层内单调增大的宽频噪声和类余弦分布的模态噪声相互叠加,致使剪切层整体动态特征呈波浪上升发展;模态噪声逆流向上行传播,其速度同样呈类余弦分布,变化趋势与模态噪声幅值保持一致,结合Rossiter模态预估理论发现同频率的上行模态声波与下行旋涡相互作用了产生了类驻波现象,导致模态噪声功率谱密度和传播速度沿流向周期性变化。Abstract: In the shear layer of the open cavity flow, the vortex interacts with the pre-transmission sound wave, causing self-sustaining oscillation. For a cavity model with a length-to-depth ratio of 7, the dynamic characteristics of the shear layer in the cavity were tested under the incoming flow condition of Mach number 0.9 by the pulsating pressure measurement technology, and the propagation law of the modal noise in the shear layer is revealed by the spectrum analysis and cross-correlation analysis. The results show that the superposition of the monotonically increasing broadband noise and cosine-like modal noise in the shear layer causes the wave-rise characteristics of the overall dynamic of the shear layer. The modal noise propagates in the reverse flow direction, its velocity is also cosine-like, and the change trend is consistent with the modal noise amplitude. Combined with the Rossiter mode estimation theory, it is revealed that the interaction between modal sound waves and vortices of the same frequency produces a standing wave-like phenomenon, resulting in periodic changes in the power spectrum density and propagation velocity of the modal noise along the flow direction.
-
Key words:
- cavity /
- transonic /
- shear layers /
- noise /
- propagation
-
表 1 试验和预测结果模态频率
Table 1. Experimental and predicted results of the modal frequency
二阶 三阶 四阶 试验结果(f) 223.39 Hz 395.51 Hz 549.32 Hz 试验结果(St) 0.601 1.065 1.479 Rossiter预估结果(St) 0.659 1.036 1.412 Heller预估结果(St) 0.634 0.997 1.36 表 2 互相关函数主瓣峰值位置
Table 2. The main lobe peak position of the cross-correlation function
R (#1,#2) (#2,#3) (#3,#4) (#4,#5) (#5,#6) (#6,#7) (#7,#8) (#8,#9) 信号滞后时间(ms) −0.9 −0.73 −0.53 −0.67 −0.77 −0.4 −1.13 −1.0 模态声波运动
速度0.30 0.37 0.51 0.40 0.35 0.67 0.24 0.27 -
[1] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Reports and Memoranda No. 3438, 1964. [2] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545–553. doi: 10.1016/0022-460x(71)90105-2 [3] CARR D. An experimental investigation of open cavity pressure oscillations[R]. AD-787-700, 1974. [4] 吴继飞, 周方奇, 徐来武, 等. 基于PIV技术的高速空腔流动演化特性研究[J]. 实验流体力学,doi: 10.11729/syltlx20210144.WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20210144. [5] KNISELY C, ROCKWELL D. Self-sustained low-frequency components in an impinging shear layer[J]. Journal of Fluid Mechanics, 1982, 116: 157–186. doi: 10.1017/s002211208200041x [6] LIU X F, KATZ J. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics, 2013, 728: 417–457. doi: 10.1017/jfm.2013.275 [7] BIAN S Y, DRISCOLL J F, ELBING B R, et al. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity[J]. Experiments in Fluids, 2011, 51(1): 51–63. doi: 10.1007/s00348-010-1025-7 [8] CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735: 587–612. doi: 10.1017/jfm.2013.519 [9] SCHMIT R, McGAHA C, TEKELL J, et al. Performance results for the optical turbulence reduction cavity[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009. doi: 10.2514/6.2009-702 [10] SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Analysis of cavity passive flow control using high speed shadowgraph images[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-738 [11] SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Examining passive flow control devices with high speed shadowgraph images around a Mach1.5 cavity flow field[C]//Proc of the 6th AIAA Flow Control Conference. 2012. doi: 10.2514/6.2012-3139 [12] WANG X S, YANG D G, LIU J, et al. Control of pressure oscillations induced by supersonic cavity flow[J]. AIAA Journal, 2020, 58(5): 2070–2077. doi: 10.2514/1.j059014 [13] 周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 128–138. doi: 10.7527/S1000-6893.2017.21812ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 128–138. doi: 10.7527/S1000-6893.2017.21812 [14] THANGAMANI V, KNOWLES K, SADDINGTON A. The effects of scaling on high subsonic cavity flow oscillations and control[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2052 [15] THANGAMANI V, SADDINGTON A, KNOWLES K. An investigation of passive control methods for a large scale cavity model in high subsonic flow[C]//Proc of the 19th AIAA/CEAS Aeroacoustics Conference. 2013. doi: 10.2514/6.2013-2049 [16] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(1): 1–12. doi: 10.1007/s00348-015-2088-2 [17] LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018, 56(7): 2669–2686. doi: 10.2514/1.j056689 [18] DUDLEY J, UKEILEY L. Suppression of fluctuating surface pressures in a supersonic cavity flow[C]//Proc of the 5th Flow Control Conference. 2010. doi: 10.2514/6.2010-4974 [19] DUDLEY J, UKEILEY L. Detached eddy simulation of a supersonic cavity flow with and without passive flow control[C]//Proc of the 20th AIAA Computational Fluid Dynamics Conference. 2011. doi: 10.2514/6.2011-3844 [20] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1810. doi: 10.1007/s00348-014-1810-9 [21] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010. -