Time-evolution characteristics of flash radiation of gasified aluminum in aluminum-aluminum hypervelocity impact
-
摘要: 撞击闪光辐射现象是超高速撞击过程中的典型物理现象之一。针对撞击闪光辐射机制和演化规律开展研究,对建立不同尺度撞击闪光辐射特征相似性关系和光学探测分辨超高速撞击动力学过程具有重要意义。在铝–铝超高速撞击闪光辐射强度时间演化过程中,会产生一个持续十几微秒的闪光辐射,实验测量分析发现该辐射过程与气体冲击波辐射特征相似。基于辐射传输理论,模拟分析了Taylor模型辐射强度时间演化特征及其影响因素,对比分析了超高速撞击反溅碎片云中的气化铝闪光辐射强度演化信息。研究结果表明:超高速撞击闪光辐射中持续时间较长的辐射强度演化峰的峰值出现时刻与靶室压强负相关。Abstract: Flash radiation is one of the typical phenomena produced in hypervelocity impacts. The study of the radiation mechanisms and evolution law of the impact flash is important for building the similarity relationship between the different scales and probing the dynamics of the hypervelocity impact. In the low pressure atmosphere, the flash radiation mechanisms in aluminum-aluminum hypervelocity impacts are multiplex. One of the radiation processes standing for tens microsecond duration may result from the ablation of tiny fragments. Analysis of impact experiments shows that the characteristics of the processes are close to with the description of the Taylor point explosion model, but further study of the radiation distribution is still lacking. In this paper, the evolution characteristics of the impact flash produced in hypervelocity impact are discussed by considering the effect of the radiation transfer in the impact products. It is found that there exists a peak structure in the time evolution of the radiation intensity, which presents a proportional law showing that the position of the radiation peak depends on the energy and density of the wave shock. The proportional law can be used to establish the relation between the chamber pressure and the radiation peak time of the shock wave. In addition, this work puts forward an approximate solution of the radiation evolution, which is derived from the radiation transfer theory and shows agreement with the results detected by experiments. The consistent results indicate the tens-microsecond-standing peak appeared in the impact flash is generated by the expansion of the shock wave, and the radiation intensity depends mainly on the expansion area and the dynamical evolution of the states of the gas distributed in the shock wave. It provides a theoretical reference for the research of the evolution law and the phenomena of the hypervelocity impact flash.
-
Key words:
- hypervelocity impact /
- impact flash /
- radiation transfer /
- radiation intensity /
- time-evolution /
- gasified aluminum
-
表 1 铝原子气体相关原子光谱结构参数
Table 1. The atomic spectra lines data of Al
编号 λ/mm Aij /(107 s−1) gi gj 1 394.40 4.98 2 2 2 396.15 9.82 2 4 表 2 实验参数及峰值时刻
Table 2. The experimental parameters and the peak time
实验编号 撞击速度/(km·s−1) 靶室压强pc/Pa 峰值时刻tp/μs 1 6.119 4 4.669 2 6.132 32 2.160 3 5.947 100 1.157 -
[1] 唐恩凌, 张庆明, 张健. 超高速碰撞LY12铝靶产生等离子体的电子温度诊断[J]. 爆炸与冲击, 2009, 29(3): 323–327. doi: 10.3321/j.issn:1001-1455.2009.03.017TANG E L, ZHANG Q M, ZHANG J. Electron temperature diagnosis of plasma generated by hypervelocity impact of a LY12 aluminum projectile into a LY12 aluminum target[J]. Explosion and Shock Waves, 2009, 29(3): 323–327. doi: 10.3321/j.issn:1001-1455.2009.03.017 [2] 龚良飞, 张庆明, 龙仁荣, 等. 超高速碰撞产生的电磁辐射[J]. 爆炸与冲击, 2021, 41(2): 13–29.GONG L F, ZHANG Q M, LONG R R, et al. The electromagnetic radiation produced by hypervelocity impact[J]. Explosion and Shock Waves, 2021, 41(2): 13–29. [3] ESTACIO B, SHOHET G, YOUNG S A Q, et al. Dust and atmospheric influence on plasma properties observed in light gas gun hypervelocity impact experiments[J]. International Journal of Impact Engineering, 2021, 151: 103833. doi: 10.1016/j.ijimpeng.2021.103833 [4] 马兆侠, 黄洁, 石安华, 等. 铝球超高速撞击铝板反溅碎片云团辐射特性研究[J]. 实验流体力学, 2014, 28(2): 90–94. doi: 10.11729/syltlx2014pz27MA Z X, HUANG J, SHI A H, et al. Study on radiation characteristics of aluminum ball impacting aluminum plate at hypervelocity[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 90–94. doi: 10.11729/syltlx2014pz27 [5] MA Z X, HUANG J, SHI A H, et al. Analysis technique for ejecta cloud temperature using atomic spectrum[J]. International Journal of Impact Engineering, 2016, 91: 25–33. doi: 10.1016/j.ijimpeng.2015.12.008 [6] ERLANDSON R E, TAYLOR J C, MICHAELIS C H, et al. Development of kill assessment technology for space-based applications[J]. Johns Hopkins APL Technical Digest, 2010, 29(3): 289–297. [7] MA Z X, SHI A H, LI J L, et al. Radiation mechanism analysis of hypervelocity impact ejecta cloud[J]. International Journal of Impact Engineering, 2020, 141: 103560. doi: 10.1016/j.ijimpeng.2020.103560 [8] 杜雪飞, 石安华, 马兆侠, 等. 铝-铝超高速撞击气化产物运动特性测量与分析[J]. 实验流体力学, 2021, 35(4): 83–91. doi: 10.11729/syltlx20200071DU X F, SHI A H, MA Z X, et al. Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 83–91. doi: 10.11729/syltlx20200071 [9] 石安华, 柳森, 黄洁, 等. 铝弹丸超高速撞击铝靶光谱辐射特性实验研究[J]. 宇航学报, 2008, 29(2): 715–717. doi: 10.3873/j.issn.1000-1328.2008.02.061SHI A H, LIU S, HUANG J, et al. Spectra measurement of radiation produced by aluminum projectiles impacting aluminum targets at hypervelocity speeds[J]. Journal of Astronautics, 2008, 29(2): 715–717. doi: 10.3873/j.issn.1000-1328.2008.02.061 [10] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究[J]. 物理学报, 2008, 57(4): 2314–2319. doi: 10.3321/j.issn:1000-3290.2008.04.051HUANG Q J. Radiation mechanism of pulsed laser ablation of metal Al[J]. Acta Physica Sinica, 2008, 57(4): 2314–2319. doi: 10.3321/j.issn:1000-3290.2008.04.051 [11] 唐恩凌, 李振波, 韩雅菲, 等. 超高速碰撞2A12铝板产生闪光辐射的空间演化规律[J]. 发光学报, 2017, 38(7): 944–952. doi: 10.3788/fgxb20173807.0944TANG E L, LI Z B, HAN Y F, et al. Spatial evolutionary rules of light flash radiation generated by hypervelocity impact on 2A12 aluminum plate[J]. Chinese Journal of Luminescence, 2017, 38(7): 944–952. doi: 10.3788/fgxb20173807.0944 [12] 李维新. 一维不定常流与冲击波[M]. 北京: 国防工业出版社, 2003: 309-343.LI W X. One-dimensional nonsteady flow and shock waves[M]. Beijing: National Defense Industry Press, 2003: 309-343. [13] TAYLOR G. The formation of a blast wave by a very intense explosion I. Theoretical discussion[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1065): 159–174. doi: 10.1098/rspa.1950.0049 [14] 刘林华, 谈和平. 梯度折射率介质内热辐射传递的数值模拟[M]. 北京: 科学出版社, 2006: 1-2. [15] KRAMIDA A, RALCHENKO Y, READER J, et al. NIST atomic spectra database (ver. 5.1)[DB/OL]. (2013-10-30)[2023-05-25]. http://physics.nist.gov/asd. doi: 10.18434/T4W30F -