Preliminary experimental study on the crushing length of centrifugal single and double injectors liquid film
-
摘要: 为贴合工程实际应用,了解双喷嘴与单喷嘴的雾化特性差异,本文对相同工况下液体中心型同轴离心式纯液相单、双喷嘴液膜破碎长度开展了实验研究。采用高速摄像机对瞬态喷雾图像进行了捕捉,提取了不同工况的双喷嘴液膜破碎长度,并与单喷嘴液膜破碎长度进行了对比分析。通过图像处理获取液膜表面波,从而对单喷嘴与双喷嘴液膜破碎长度产生差异的机理进行分析。结果表明:相同工况下双喷嘴的液膜破碎长度小于单喷嘴,单喷嘴与双喷嘴的液膜破碎长度之间的差异呈现先增加后减小的趋势;文中定义的波长增长率反应了破碎前液膜的不稳定程度,单喷嘴液膜表面波的波长增长率随着液体质量流率的增大而增大,对于双喷嘴其破碎前液膜的不稳定,不仅与初始工况有关还与液膜撞击后产生扰动的作用距离有关,从而使双喷嘴液膜表面波的波长增长率随着质量流率的增加,呈现先增大后减小的趋势。Abstract: In order to fit the actual application of engineering and understand the variations of atomization characteristics of the dual injectors and the single injector, an experimental study on the liquid film breakage length of the liquid-centered coaxial centrifugal pure liquid-phase single-injector and dual-injectors under the same working conditions was carried out in this paper. A high-speed camera was used to capture the transient spray images, and the liquid film breakage lengths of the dual injectors under different working conditions were extracted and analyzed in comparison with those of the single injectors. The surface waves of the liquid film were obtained through image processing to analyze the mechanism of the variations between the liquid film breakage lengths of the single injector and dual injectors. The results show that the liquid film breakage length of the dual injectors is smaller than that of the single injector under the same working condition, and the difference between the liquid film breakage lengths of the single injector and dual injectors show a tendency of increasing and consequently decreasing. The wavelength growth rate defined in the paper reflects the degree of instability of the liquid film before breakage, and the growth rate of the wavelength of the liquid film surface wave of the single injector increases with the increase of the mass flow rate of the liquid, while that of the dual injectors shows that the instability of the liquid film before breakage is not only related to the initial working condition, but also related to the distance between the liquid film impact and the action of the perturbation, so that the wavelength growth rate of the double injectors liquid film surface wave increases first and then decreases with the increase of the mass flow rate.
-
表 1 喷嘴尺寸参数
Table 1. Geometrical conditions of injector
参数 值 液喷嘴等直段直径Dz 4.7 mm 气喷嘴环缝内径Dg-in 8 mm 气喷嘴环缝外径Dg-out 9 mm 液喷嘴旋流室直径Ds 10.2 mm 旋流室高度Ls 10.2 mm 切向孔直径Dt 2 mm 切向孔中心轴线到液喷嘴中轴的距离Rs 4 mm 收缩角θ2 90° 扩张角θ1 10° 两喷嘴中轴线距离Lsp 20 mm 等值段长度Lz 40 mm 表 2 实验工况
Table 2. Experimental operating conditions
模拟液体推进剂 模拟介质 过滤水 喷注压降$\Delta $p 0.119~0.864 MPa 液体质量流率${\dot m_{\rm{l}}}$ 50~140 g/s -
[1] 刘国球. 液体火箭发动机原理[M]. 北京: 宇航出版社, 1993. [2] KIM J G, HAN Y M, CHOI H S, et al. Study on spray patterns of gas-centered swirl coaxial (GCSC) injectors in high pressure conditions[J]. Aerospace Science and Tech-nology, 2013, 27(1): 171–178. doi: 10.1016/j.ast.2012.08.004 [3] SHAFAEE M, MAHMOUDZADEH S. Numerical investi-gation of spray characteristics of an air-blast atomizer with dynamic mesh[J]. Aerospace Science and Technology, 2017, 70: 351–358. doi: 10.1016/j.ast.2017.08.024 [4] CHEN C, YANG Y, YANG S H, et al. The spray characteristics of an open-end swirl injector at ambient pressure[J]. Aerospace Science and Technology, 2017, 67: 78–87. doi: 10.1016/j.ast.2017.03.035 [5] 王成军, 陈海耿, 张宝诚. 双路离心式喷嘴的实验与数值模拟[J]. 工程热物理学报, 2010, 31(10): 1797–1799.WANG C J, CHEN H G, ZHANG B C. Experiment and numerical simulation of a dual-orifice pressure-swirl atomizer[J]. Journal of Engineering Thermophysics, 2010, 31(10): 1797–1799. [6] 曹建明. 液体喷雾学[M]. 北京: 北京大学出版社, 2013.CAO J M. Liquid sprays[M]. Beijing: Peking University Press, 2013. [7] 康忠涛. 气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D]. 长沙: 国防科学技术大学, 2016.KANG Z T. The unsteady atomization mechanism and combustion characteristics of gas-liquid swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2016. [8] YOON Y, JEUNG I. Effects of ambient gas pressure on the breakup of sprays in like-doublet and swirl coaxial injectors[C]//Proc of the International Symposium on Energy Conversion Fundamentals. 2004. [9] MOON S, ABO-SERIE E, BAE C. Air flow and pressure inside a pressure-swirl spray and their effects on spray development[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 222–231. doi: 10.1016/j.expthermflusci.2008.08.005 [10] YANG L J, FU Q F, QU Y Y, et al. Spray characteristics of gelled propellants in swirl injectors[J]. Fuel, 2012, 97: 253–261. doi: 10.1016/j.fuel.2012.02.036 [11] FU Q F, YANG L J, QU Y Y, et al. Linear stability analysis of a conical liquid sheet[J]. Journal of Propulsion and Power, 2010, 26(5): 955–968. doi: 10.2514/1.48346 [12] 李继保, 岳明, 杨茂林. 锥形液膜Kevin-Helmholtz波不稳定性的实验研究[J]. 航空动力学报, 2007, 22(3): 337–341. doi: 10.3969/j.issn.1000-8055.2007.03.001LI J B, YUE M, YANG M L. Experimental research of instability of kevin-helmholtz wave on conical sheets[J]. Journal of Aerospace Power, 2007, 22(3): 337–341. doi: 10.3969/j.issn.1000-8055.2007.03.001 [13] 岳明. 锥形液膜初始破碎雾化过程和机理研究[D]. 北京: 北京航空航天大学, 2003.YUE M. Study on the process and mechanism of initial breakup and atomization of conical liquid film[D]. Beijing: Beihang University, 2003. [14] 杨立军, 葛明和, 张向阳. 液体离心喷嘴喷雾场动态特性的初步研究[J]. 航空动力学报, 2005, 20(6): 1083–1087. doi: 10.13224/j.cnki.jasp.2005.06.032YANG L J, GE M H, ZHANG X Y. Preliminary investigation on dynamic characteristics of swirl injector[J]. Journal of Aerospace Power, 2005, 20(6): 1083–1087. doi: 10.13224/j.cnki.jasp.2005.06.032 [15] 楚威. 液体中心型同轴离心式喷嘴喷雾和自激震荡特性仿真研究[D]. 北京: 航天工程大学, 2020.CHU W. Simulation study on spray and self-excited oscillation characteristics of liquid centered coaxial centri-fugal nozzle[D]. Beijing: Aerospace engineering university, 2020. [16] 张涛, 王福顺, 况付毫, 等. 气液同轴双离心式喷嘴宏观雾化特性实验研究[J]. 推进技术. doi: 10.13675/j.cnki.tjjs.2208011.ZHANG T, WANG F S, KUANG F H, et al. Experimental Study on Macro-Spray Characteristics of Gas Liquid Double Swirl Coaxial Injectors[J]. Journal of Propulsion Technology. doi: 10.13675/j.cnki.tjjs.2208011. [17] 林玉静. 旋流喷嘴射流及其破碎机理的研究[D]. 天津: 天津大学, 1999.LIN Y J. Study on jet flow from swirl nozzle and its crushing mechanism[D]. Tianjin: Tianjin University, 1999. [18] CHU W, LI X Q, TONG Y H, et al. Numerical investigation of the effects of gas-liquid ratio on the spray characteristics of liquid-centered swirl coaxial injectors[J]. Acta Astronau-tica, 2020, 175: 204–215. doi: 10.1016/j.actaastro.2020.05.050 [19] 张永良, 王宝瑞, 孔文俊, 等. 离心喷嘴实验与流场结构的数值模拟[J]. 工程热物理学报, 2013, 34(4): 760–764.ZHANG Y L, WANG B R, KONG W J, et al. Experiment and numerical studies on the flow field of a pressure atomizer[J]. Journal of Engineering Thermophysics, 2013, 34(4): 760–764. -