Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing
-
摘要: 在蝙蝠扑翼运动过程中,惯性力和气动力往往同时存在。为研究蝙蝠柔性膜翼挥拍运动的气动特性,需从耦合的扑翼惯性力和气动力中分离出气动力。本文搭建了基于多目视觉的拍摄平台,以获取不同属性的柔性膜翼挥拍运动图像,使用多目视觉算法重构了柔性膜翼变形,从变形中计算惯性力。通过六维力传感器获得了柔性膜翼实时受力,从中消除惯性力后得到气动力,并分析了惯性力与气动力之间的关系。经短梁标准模型验证,采用该方法重构的最大变形误差约为2.36%。研究结果表明:大柔性膜翼在挥拍运动中显著变形,变形程度与惯性力和气动力相关;随着膜翼厚度增大,惯性力和气动力都有不同程度提高。Abstract: Inertia force and aerodynamic force are often coupled in flapping motion. In order to study the aerodynamic characteristics of a bat flexible membrane wing in flapping motion, it is necessary to separate the inertia force and the aerodynamic force to obtain the aerodynamic force. By setting up a photographic platform based on multi-vision, images of flexible membrane wings with different properties were captured, and a multi-vision algorithm was used to reconstruct the deformation of the flexible membrane wing, so the inertia force can be calculated from the deformation. A six-axis force sensor was used to obtain the real-time force of the flexible membrane wing, then the aerodynamic force can be obtained by eliminating the inertia force, and the law between the inertia force and the aerodynamic force was analyzed. A standard model verifies that the deformation error of this method is 2.36%. The results show that the highly flexible wing membrane has a significant deformation during the flapping process, which is related to both inertia force and aerodynamic force. And with the increase of the thickness of the wing membrane, the inertia force and the aerodynamic force are increased to different extents.
-
Key words:
- flexible wing membrane /
- flapping motion /
- passive deformation /
- inertia force /
- aerodynamic force /
- multi-vision
-
表 1 模型翼膜和骨架的材料参数
Table 1. Material parameters of the model wing’s membrane and skeleton
材料 密度
ρ/(kg·m−3)弹性模量
E/MPa厚度
h/mm弯曲模量
Eb /MPaPLA + 1300 4000 5 1913 尼龙 629 2500 0.07 — 乳胶 1520 0.66 0.30 — 表 2 力传感器量程和分辨率
Table 2. Range and resolution of the force sensor
参数 量程 分辨率 Fx, Fy 25 N 1/160 N Fz 35 N 1/160 N Tx, Ty, Tz 250 N·mm 1/32 N·mm 表 3 静态测量误差
Table 3. Static measuring error
展长/mm 弦长/mm 1 182.89 78.72 2 182.52 78.99 3 185.73 79.61 4 184.66 79.55 5 184.30 79.68 平均值 184.02 79.31 相对误差 2.23% 0.86% 表 4 ATI力传感器测量误差
Table 4. Force sensor measurement error
砝码质量/g 重量真实值/N 重量测量值/N 误差值/N 相对误差 5 0.049 0.047 0.002 4.08% 10 0.098 0.097 0.001 1.02% 50 0.490 0.491 0.001 0.20% 100 0.980 0.982 0.002 0.20% 表 5 不同厚度翼膜的弯曲刚度
Table 5. Flexural stiffness of membranes with different thicknesses
翼膜厚度h/mm 翼膜弯曲刚度EI/(10−5N·m2) 0.3 1.188 × 10−2 0.5 5.5 × 10−2 0.8 0.2253 1.0 0.44 1.5 1.485 -
[1] BUNGET G, SEELECKE S. BATMAV: a biologically inspired micro-air vehicle for flapping flight: kinematic modeling[C]// Active and Passive Smart Structures and Integrated Systems 2008. 2008. [2] BUNGET G. BATMAV: a bio-inspired micro-air vehicle for flapping flight[M]. Raleigh: North Carolina State University, 2010. [3] KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089–1094. doi: 10.1126/science.aat0350 [4] DONG X, LI D C, XIANG J W, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3092–3099. doi: 10.1016/j.cja.2020.04.024 [5] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3): eaal2505. doi: 10.1126/scirobotics.aal2505 [6] TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. Journal of Experimental Biology, 2003, 206(16): 2803–2829. doi: 10.1242/jeb.00501 [7] SONG J L, LUO H X, HEDRICK T L. Performance of a quasi-steady model for hovering hummingbirds[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 50–53. doi: 10.1016/j.taml.2014.12.003 [8] XU R, ZHANG X D, LIU H. Effects of wing-to-body mass ratio on insect flapping flights[J]. Physics of Fluids, 2021, 33(2): 021902. doi: 10.1063/5.0034806 [9] RISKIN D K, BERGOU A, BREUER K S, et al. Upstroke wing flexion and the inertial cost of bat flight[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1740): 2945–2950. doi: 10.1098/rspb.2012.0346 [10] HEDRICK T L, USHERWOOD J R, BIEWENER A A. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation[J]. The Journal of Experimental Biology, 2007, 210(Pt 11): 1912–1924. [11] FAN X Z, SWARTZ S M, BREUER K. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings[J]. Journal of the Royal Society Interface, 2022, 19(194): 20220315. doi: 10.1098/rsif.2022.0315 [12] WEIS-FOGH T. Energetics of hovering flight in hummingbirds and in drosophila[J]. Journal of Experimental Biology, 1972, 56(1): 79–104. doi: 10.1242/jeb.56.1.79 [13] LIANG B, SUN M. Dynamic flight stability of a hovering model dragonfly[J]. Journal of Theoretical Biology, 2014, 348: 100–112. doi: 10.1016/j.jtbi.2014.01.026 [14] RAHMAN A, TAFTI D. Role of wing inertia in maneuvering bat flights[J]. Bioinspiration & Biomimetics, 2023, 18(1): 016007. doi: 10.1088/1748-3190/ac9fb1 [15] FAN X Z, BREUER K. Low-order modeling of flapping flight with highly articulated, cambered, heavy wings[J]. AIAA Journal, 2022, 60(2): 892–901. doi: 10.2514/1.j060661 [16] YUSOFF H, ABDULLAH M Z, et al. Effect of skin flexibility on aerodynamic performance of flexible skin flapping wings for micro air vehicles[J]. Experimental Techniques, 2015, 39(1): 11–20. doi: 10.1111/ext.12004 [17] WU P, STANFORD B K, SÄLLSTRÖM E, et al. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings[J]. Bioinspiration & Biomimetics, 2011, 6(1): 016009. doi: 10.1088/1748-3182/6/1/016009 [18] HOPE D K, DELUCA A M, O’HARA R P. Investigation into Reynolds number effects on a biomimetic flapping wing[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 106–122. doi: 10.1177/1756829317745319 [19] YIN D F, ZHANG Z S, DAI M. Effects of inertial power and inertial force on bat wings[J]. Zoological Science, 2016, 33(3): 239–245. doi: 10.2108/zs150182 [20] YIN D F, ZHANG Z S. The inertial power and inertial force of robotic and natural bat wing[J]. Comptes Rendus Mécanique, 2016, 344(3): 195–207. doi: 10.1016/j.crme.2015.11.002 [21] YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63–76. doi: 10.1016/j.cja.2021.09.020 [22] TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 126: 100738. doi: 10.1016/j.paerosci.2021.100738 [23] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718 [24] BLEISCHWITZ R, DE KAT R, GANAPATHISUBRA-MANI B. On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect[J]. Journal of Fluids and Structures, 2017, 70: 214-234. [25] ADDO-AKOTO R, HAN J S, HAN J H. Aerodynamic characteristics of flexible flapping wings depending on aspect ratio and slack angleJ]. Physics of Fluids, 2022, 34(5): 051911. [26] 朱博闻, 余永亮. 仿蝙蝠翼变形挥拍的气动力特性研究[J/OL]. 中国科学院大学学报. http://journal.ucas.ac.cn /CN/10.7523/j.ucas.2023.051. .ZHU B W, YU Y L. Study on aerodynamic characteristics of deforming bat-like wing in forward flight[J/OL]. Journal of University of Chinese Academy of Sciences. http://journal.ucas.ac.cn/CN/10.7523/j.ucas.2023. 051. . -