Cooling and friction reduction performance and mechanism of supersonic film cooling using hydrogen and hydrocarbon
-
摘要: 在超燃冲压发动机燃烧室中应用燃料气膜冷却可以有效降低发动机壁面严峻的力热载荷,本文对有望应用于超燃冲压发动机的氢和碳氢燃料气膜进行大涡模拟研究。结果表明氢气膜和碳氢燃料气膜间防热和减阻性能具有显著的差异,该差异来源于燃料气膜与主流之间的混合层中湍流状态的显著不同。氢气膜与主流之间的湍流输运过程远弱于碳氢燃料的情况,从而使得氢气膜在惰性情况下具有极其优异的冷却和减阻性能;但当边界层燃烧发生时,由于剧烈的近壁释热,氢气膜的冷却性能急剧恶化。相反的,当碳氢燃料发生边界层燃烧时,其冷却和减阻性能可以从惰性时较差的水平同时提升至与氢气膜可以进行比较的水平。Abstract: The essential difference of the turbulent state in the mixing layer contributes to the totally different behavior of the cooling and wall friction reduction performances of the hydrogen and hydrocarbon fuel films. The turbulent transport processes between the hydrogen film and the mainstream are much weaker than that of the hydrocarbon film making inert hydrogen to be rather superior in cooling and friction reduction applications. However, the film cooling performance severely deteriorates when the hydrogen film burns due to the severe heat release sources presented near the wall. On the other hand, the boundary layer combustion of hydrocarbon film can remarkably improve its original barely satisfactory cooling and friction reduction performance to be comparable to that of the hydrogen film due to the suppression of turbulent transport processes in the mixing layer and presence of heat absorption sources near the wall.
-
Key words:
- supersonic film cooling /
- hydrogen /
- hydrocarbon /
- turbulent transport processes /
- large eddy simulation
-
表 1 主流和气膜的名义边界条件
Table 1. Nominal inlet conditions for mainstream and fuel film.
Inlet p/MPa T/K U/(m·s-1) Ma ${Y_{ {{\rm{H}}_2} } }$ ${Y_{ {{\rm{C}}_{10} }{{\rm{H}}_{22} } } }$ ${Y_{ {{\rm{O}}_2} } }$ ${Y_{ {{\rm{N}}_2} } }$ Mainstream 0.16 1623 1374 1.75 0 0 0.23 0.77 H2 film 0.16 700 2006 1 1 0 0 0 C10H22 film 0.16 700 200 1 0 1 0 0 表 2 算例设置
Table 2. Cases setup
Case Fuel Chemistry Label 1 C10H22 off C10-NR 2 C10H22 on C10-R 3 H2 off H2-NR 4 H2 on H2-R -
[1] DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1–18. doi: 10.1016/j.cja.2021.10.037 [2] CURRAN E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138–1148. doi: 10.2514/2.5875 [3] CHOUBEY G, DEVARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine- a brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895–13909. doi: 10.1016/j.ijhydene.2019.04.003 [4] ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. doi: 10.1016/j.paerosci.2020.100646 [5] ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119–1136. doi: 10.1016/j.cja.2019.12.023 [6] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929–1953. doi: 10.1016/j.cja.2018.06.011 [7] HASSAN E, BOLES J, AONO H, et al. Supersonic jet and crossflow interaction: computational modeling[J]. Progress in Aerospace Sciences, 2013, 57: 1–24. doi: 10.1016/j.paerosci.2012.06.002 [8] NING W, YU P, JIN Z. Research status of active cooling of endothermic hydrocarbon fueled scramjet engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(11): 1780–1794. doi: 10.1177/0954410012463642 [9] CHOUBEY G, YUVARAJAN D, HUANG W, et al. Hydrogen fuel in scramjet engines - A brief review[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16799–16815. doi: 10.1016/j.ijhydene.2020.04.086 [10] XUE R, ZHENG X, YUE L J, et al. Reduction of surface friction drag in scramjet engine by boundary layer combustion[J]. Aerospace Science and Technology, 2021, 115: 106788. doi: 10.1016/j.ast.2021.106788 [11] ZHANG P, XU J L, YU Y, et al. Effect of adverse pressure gradient on supersonic compressible boundary layer combustion[J]. Aerospace Science and Technology, 2019, 88: 380–394. doi: 10.1016/j.ast.2019.03.013 [12] GOLDSTEIN R J. Film cooling[M]//Advances in Heat Transfer. Amsterdam: Elsevier, 1971: 321-379. doi: 10.1016/s0065-2717(08)70020-0 [13] JUHANY K A, HUNT M L, SIVO J M. Influence of injectant Mach number and temperature on supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 59–67. doi: 10.2514/3.501 [14] SONG C Q, SHEN C B. Effects of lip thickness on the flowfield structures of supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3): 599–605. doi: 10.2514/1.t5479 [15] SONG C Q, SHEN C B. Effects of feeding pressures on the flowfield structures of supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(3): 648–658. doi: 10.2514/1.t5322 [16] SONG C Q, SHEN C B. Effects of feeding Mach numbers on the flowfield structures of supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(1): 264–270. doi: 10.2514/1.t5475 [17] LIN J C, WANG Q C, ZHAO Y X, et al. An experimental investigation on the isoenergetic supersonic cooling films subjected to different ratios of static pressure[J]. Physics of Fluids, 2023, 35(5): 056107. doi: 10.1063/5.0149851 [18] GOYNE C P, STALKER R J, PAULL A, et al. Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 740–746. doi: 10.2514/2.3645 [19] GOYNE C P, STALKER R J, PAULL A. Skin-friction measurements in high-enthalpy hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2003, 485: 1–32. doi: 10.1017/s0022112003003975 [20] KIRCHHARTZ R M, MEE D J, STALKER R J. Supersonic skin-friction drag with tangential wall slot fuel injection and combustion[J]. AIAA Journal, 2012, 50(2): 313–324. doi: 10.2514/1.j051073 [21] KONOPKA M, MEINKE M, SCHRÖDER W. Large-eddy simulation of shock-cooling-film interaction at helium and hydrogen injection[J]. Physics of Fluids, 2013, 25(10): 106101. doi: 10.1063/1.4823745 [22] KELLER M A, KLOKER M J, OLIVIER H. Influence of cooling-gas properties on film-cooling effectiveness in supersonic flow[J]. Journal of Spacecraft and Rockets, 2015, 52(5): 1443–1455. doi: 10.2514/1.a33203 [23] PUDSEY A S, WHEATLEY V, BOYCE R R. Supersonic boundary-layer combustion via multiporthole injector arrays[J]. AIAA Journal, 2015, 53(10): 2890–2906. doi: 10.2514/1.j053817 [24] LIU H P, GAO Z X, JIANG C W, et al. Studies of combustion effects on near-wall turbulence in supersonic flows by large eddy simulation[J]. Aerospace Science and Technology, 2020, 107: 106328. doi: 10.1016/j.ast.2020.106328 [25] BURROWS M C, KURKOV A P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream[J]. AIAA Journal, 1973, 11(9): 1217–1218. doi: 10.2514/3.50564 [26] WEI J, ZHANG S L, ZUO J Y, et al. Effects of combustion on the near-wall turbulence and performance for supersonic hydrogen film cooling using large eddy simulation[J]. Physics of Fluids, 2023, 35(3): 035112. doi: 10.1063/5.0139355 [27] ZUO J Y, ZHANG S L, WEI D Y, et al. Effects of combustion on supersonic film cooling using gaseous hydrocarbon fuel as coolant[J]. Aerospace Science and Technology, 2020, 106: 106202. doi: 10.1016/j.ast.2020.106202 [28] ZUO J Y, ZHANG S L, QIN J, et al. Effects of shock waves interaction on hydrocarbon fueled supersonic film cooling with combustion[J]. Aerospace Science and Technology, 2021, 113: 106693. doi: 10.1016/j.ast.2021.106693 [29] ZUO J Y, WEI D Y, ZHANG S L, et al. Parametric numerical analysis on the interaction between combustion and hydrocarbon fueled supersonic film cooling[J]. Aerospace Science and Technology, 2021, 111: 106535. doi: 10.1016/j.ast.2021.106535 [30] WEI J F, ZHANG S L, WANG H Y, et al. Effects of fuel conversion ratio on cooling and drag reduction performance for supersonic film using gaseous hydrocarbon fuel[J]. Applied Thermal Engineering, 2022, 216: 119181. doi: 10.1016/j.applthermaleng.2022.119181 [31] EKLUND D, STOUFFER S. A numerical and experimental study of a supersonic combustor employing sweep ramp fuel injectors[C]//The Proceedings of the 30th Joint Propulsion Conference and Exhibit. 1994. doi: 10.2514/6.1994-2819 [32] CHANG Y C, JIA M, LIU Y D, et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology[J]. Combustion and Flame, 2013, 160(8): 1315–1332. doi: 10.1016/j.combustflame.2013.02.017 [33] CONTINO F, JEANMART H, LUCCHINI T, et al. Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: an effective method for solving combustion in engine simulations[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3057–3064. doi: 10.1016/j.proci.2010.08.002 [34] PIROZZOLI S. Generalized conservative approximations of split convective derivative operators[J]. Journal of Computational Physics, 2010, 229(19): 7180–7190. doi: 10.1016/j.jcp.2010.06.006 [35] JARRIN N. Synthetic inflow boundary conditions for the numerical simulation of turbulence[D]. Manchester: The university of Manchester, 2008. [36] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000. -