留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形长宽比对射流中心线湍流特性的影响

马梓然 徐敏义 栾剑 刘晓鹏 赵飞飞

马梓然, 徐敏义, 栾剑, 等. 矩形长宽比对射流中心线湍流特性的影响[J]. 实验流体力学, 2017, 31(1): 54-61. doi: 10.11729/syltlx20160116
引用本文: 马梓然, 徐敏义, 栾剑, 等. 矩形长宽比对射流中心线湍流特性的影响[J]. 实验流体力学, 2017, 31(1): 54-61. doi: 10.11729/syltlx20160116
Ma Ziran, Xu Minyi, Luan Jian, et al. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. doi: 10.11729/syltlx20160116
Citation: Ma Ziran, Xu Minyi, Luan Jian, et al. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. doi: 10.11729/syltlx20160116

矩形长宽比对射流中心线湍流特性的影响

doi: 10.11729/syltlx20160116
基金项目: 

国家自然科学基金 51506019

辽宁省自然科学基金 2012025012

详细信息
    作者简介:

    马梓然(1992-),男,辽宁辽阳人,硕士研究生。研究方向:轮机工程。通信地址:大连海事大学轮机楼223(116026)。E-mail:223706576@qq.com

    通讯作者:

    E-mail:xuminyi@dlmu.edu.cn

  • 中图分类号: O358

Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios

  • 摘要: 采用热线风速仪技术,测量了在出口雷诺数15,000条件下的不同长宽比(AR=1~15)矩形射流中心线速度场。主要分析了矩形射流中心线上平均速度、频谱、湍流尺度等变化规律。结果表明:随着长宽比的增加,射流的脉动速度和湍流度在出口之后会显著增强,反映了卷吸周围流体能力显著增强。随着射流向下游发展(x/De>30),不同长宽比的矩形射流湍流能谱、概率密度函数、湍流尺度等统计量逐渐趋近于圆形射流规律,这是由于射流演化遵循动量向周围流体更高效传递的原理。
  • 图  1  射流实验装置

    Figure  1.  The schematic diagram of jet experiment

    图  2  喷嘴尺寸

    Figure  2.  The dimensional of nozzles

    图  3  矩形和圆形射流中心线速度衰减

    Figure  3.  Centreline evolutions of velocity decay for the jets

    图  4  矩形射流和圆形射流中心线湍流度

    Figure  4.  Centreline evolutions of the turbulence intensity in the jets

    图  5  圆形和矩形射流中心线速度概率密度函数分布(实线表示高斯分布)

    Figure  5.  Centreline evolutions of the u PDF in the jets and full lines denote the Gaussian distribution

    图  6  圆形和矩形射流偏斜因子与平坦因子沿中心线的变化

    Figure  6.  Centreline evolutions of flatness and skewness in the jets

    图  7  圆形和不同长宽比矩形射流中心线频谱分布

    Figure  7.  Centerline spectra distribution of different jets

    图  8  圆形和矩形射流在x/De≈30处中心线频谱

    Figure  8.  Centreline spectra of jets obtained at x/De≈30

    图  9  圆形和矩形中心线特征尺度函数

    Figure  9.  Centerline evolutions of turbulent $\frac{L}{{{D}_{\text{e}}}},\frac{\lambda }{{{D}_{\text{e}}}}$ and $\frac{\eta }{{{D}_{\text{e}}}}$ for jets

    表  1  不同形状喷嘴平均速度衰减特性

    Table  1.   Mean streamwise centreline velocity decay parameters on the jet centerline for jets

    文献喷嘴形状x/DeBxu/dRe/104
    本文Cirle8.00.158-0.07851.5
    本文AR=18.50.2040.5311.5
    本文AR=28.60.2000.4591.5
    本文AR=59.10.2010.4831.5
    本文AR=109.30.1990.4991.5
    本文AR=159.50.2050.5021.5
    MiAR=18.30.2030.5001.5
    MiAR=28.50.200-0.9001.5
    下载: 导出CSV
  • [1] Gutmark E, Grinstein F. Flow control with noncircular jets[J]. Annual Review of Fluid Mechanics, 2003, 31 (1): 239-272. https://www.researchgate.net/profile/Fernando_Grinstein/publication/228474534_FLOW_CONTROL_WITH_NONCIRCULAR_JETS_1/links/0046351e8000e3041f000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [2] Mi J, Nathan G J. Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles[J]. Flow, Turbulence and Combustion, 2010, 84 (4): 583-606. doi: 10.1007/s10494-009-9240-0
    [3] Grinstein F. Self-induced vortex ring dynamics in subsonic rectangular jets[J]. Physics of Fluids, 1995, 7 (10): 2519-2521. doi: 10.1063/1.868699
    [4] Grinstein F, Gutmark E, Parr T. Near field dynamics of subsonic free square jets: a computational and experimental study[J]. Physics of Fluids, 1995, 7 (6): 1483-1497. doi: 10.1063/1.868534
    [5] Gutmark E, Schadow K C, Parr T, et al. Noncircular jets in combustion systems[J]. Experiments in Fluids, 1989, 7 (4): 248-258. https://www.researchgate.net/publication/226810595_Noncircular_jets_in_combustion_systems
    [6] Mi J, Nathan G J, Luxton R E. Centreline mixing characteristics of jets from nine differently shaped nozzles[J]. Experiments in Fluids, 2000, 28 (1): 93-94. doi: 10.1007/s003480050012
    [7] Miller R C, Madnia, Givi P. Numerical simulation of non-circular jets[J]. Computers&Fluids, 1995, 24 (1): 1-25. https://www.researchgate.net/publication/222453953_Numerical_simulation_of_non-circular_jets
    [8] Quinn W R. Development of a large-aspect-ratio rectangular turbulent free jet[J]. AIAA Journal, 1994, 32 (3): 547-554. doi: 10.2514/3.12020
    [9] Yu H, Girimaji S S. Near-field turbulent simulations of rectangular jets using lattice Boltzmann method[J]. Physics of Fluids, 2005, 17: 125106. doi: 10.1063/1.2140021
    [10] Mi J, Nathan G. Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles[J]. Flow, Turbulence and Combustion, 2010, 84 (4): 583-606. doi: 10.1007/s10494-009-9240-0
    [11] Quinn W. Streamwise evolution of a square jet cross section[J]. AIAA Journal, 1992, 30 (12): 2852-2857. doi: 10.2514/3.48973
    [12] Krothapalli A, Baganoff D, Karamcheti K. On the mixing of a rectangular jet[J]. Journal of Fluid Mechanics, 1981, 107 (1): 201-220. https://www.researchgate.net/publication/23619832_On_The_Mixing_of_a_Rectangular_Jet
    [13] Quinn W, Militzer J. Experimental and numerical study of a turbulent free square jet[J]. Physics of Fluids, 1988, 31: 1017. doi: 10.1063/1.867007
    [14] Sfeir A. Investigation of three-dimensional turbulent rectangular jets[J]. AIAA Journal, 1979, 17: 1055-1060. doi: 10.2514/3.61277
    [15] Tsuchiya Y, Horikoshi C. On the spread of rectangular jets[J]. Experiments in Fluids, 1986, 4 (4): 197-204. doi: 10.1007/BF00717815
    [16] Tam C K W, Thies A T. Instability of rectangular jets[J]. Journal of Fluid Mechanics, 1993, 248: 425-448. doi: 10.1017/S0022112093000837
    [17] Deo R C, Nathan G J, Mi J C. Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls[J]. Expe-rimental Thermal and Fluid Science, 2007, 32 (2): 596-606. doi: 10.1016/j.expthermflusci.2007.06.009
    [18] Husain H S, Hussain F. Elliptic jets Ⅱ-dynamics of coherent structures: pairing[J]. Journal of Fluid Mechanics, 1991, 233: 439-482. doi: 10.1017/S0022112091000551
    [19] Deo R C, Mi J, Nathan G J. The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet[J]. Experimental Thermal and Fluid Science, 2007, 32 (2): 545-559. doi: 10.1016/j.expthermflusci.2007.06.004
    [20] Mi J, Nobes D S, Nathan G J. Influence of jet exit conditions on the passive scaler field of an axisymmetric free jet[J]. Journal of Fluid Mechanics, 2001, 432: 91-125. https://www.researchgate.net/publication/231979781_Influence_of_jet_exit_conditions_on_the_passive_scalar_field_of_an_axisymmetric_free_jet
    [21] Mi J, Nathan G J, Nobes D S. Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe[J]. Journal of Fluids Engineering-Transactions of the Asme, 2001, 123 (4): 878-883. doi: 10.1115/1.1412460
    [22] Xu G, Antonia R A. Effect of different initial conditions on a turbulent round free jet[J]. Experiments in Fluids, 2002, 33 (5): 677-683. doi: 10.1007/s00348-002-0523-7
    [23] Deo R C, Mi J, Nathan G J. The influence of Reynolds number on a plane jet[J]. Physics of Fluids, 2008, 20 (7): 075108. doi: 10.1063/1.2959171
    [24] 杜诚, 徐敏义, 米建春. 雷诺数对圆形渐缩喷嘴湍流射流的影响[J]. 物理学报, 2010, 59 (9): 6331-6338. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201009065.htm

    Du C, Xu M Y, Mi J C. Effect of exit Reynolds number on a turbulent round jet[J]. Acta Physica Sinica, 2010, 59 (9): 6331-6338. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201009065.htm
    [25] Dowling D R, Dimotakis P E. Similarity of the concentration field of gas-phase turbulent jets[J]. Journal of Fluid Mecha-nics, 1990, 218 (1): 109-141. https://www.researchgate.net/publication/232029248_Similarity_of_the_concentration_field_of_gas-phase_turbulent_jets
    [26] Quinn J. Effects of nonparallel exit flow on round turbulent free jets[J]. International Journal of Heat and Fluid Flow, 1989, 10 (2): 139-145. doi: 10.1016/0142-727X(89)90008-8
    [27] Quinn W R. Upstream nozzle shaping effects on near field flow in round turbulent free jets[J]. European Journal of Mechanics-B/Fluids, 2005, 25 (3): 279-301.
    [28] Nathan G J, Mi J, Alwahabi Z T, et al. Impacts of a jet's exit flow pattern on mixing and combustion performance[J]. Progress in Energy and Combustion Science, 2006, 32 (5-6): 496-538. doi: 10.1016/j.pecs.2006.07.002
    [29] Mi J, Xu M, Du C. Digital filter for hot-wire measurements of small-scale turbulence properties[J]. Measurement Science and Technology, 2011, 22: 125401. doi: 10.1088/0957-0233/22/12/125401
    [30] Mi J, Deo R C, Nathan G J. Fast-convergent iterative scheme for filtering velocity signals and finding Kolmogorov scales[J]. Physical Review E, 2005, 71 (6): 066304. doi: 10.1103/PhysRevE.71.066304
    [31] 冯云松, 金伟, 黄超超, 等. 宽高比对矩形尾喷管羽流温度场的影响研究[J]. 机械设计与制造, 2012, 12: 224-226. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201212081.htm

    Feng Y S, Jin W, Huang C C, et al. Research on the influence of aspect ratio on plume temperature field of a rectangular nozzle[J]. Machinery Design&Manufacture, 2012, 12: 224-226. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201212081.htm
    [32] 张勃, 吉洪湖, 曹广州, 等. 宽高比对矩形喷管射流湍流强度影响试验[J]. 航空动力学报, 2010, 25 (10): 2244-2248. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010015.htm

    Zhang B, Ji H H, Cao G Z, et al. Experimental investigation of jets turbulence intersity charateristics from rectangular nozzles with different aspect ratios[J]. Journal of Aerospace Power, 2010, 25 (10): 2244-2248. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010015.htm
    [33] Bejan A, Ziaei S, Lorente S. Evolution: Why all plumes and jets evolve to round cross sections[J]. Scientific Reports, 2014, 4. http://www.academia.edu/15487898/Evolution_Why_all_plumes_and_jets_evolve_to_round_cross_sections
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  98
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-24
  • 修回日期:  2016-09-05
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日