留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转爆轰发动机燃烧室的燃烧与流动特性研究

王宇辉 乐嘉陵 杨样 谭宇

王宇辉, 乐嘉陵, 杨样, 等. 旋转爆轰发动机燃烧室的燃烧与流动特性研究[J]. 实验流体力学, 2017, 31(1): 32-38. doi: 10.11729/syltlx20160119
引用本文: 王宇辉, 乐嘉陵, 杨样, 等. 旋转爆轰发动机燃烧室的燃烧与流动特性研究[J]. 实验流体力学, 2017, 31(1): 32-38. doi: 10.11729/syltlx20160119
Wang Yuhui, Le Jialing, Yang Yang, et al. Study on combustion and flow characteristics in a rotating detonation combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 32-38. doi: 10.11729/syltlx20160119
Citation: Wang Yuhui, Le Jialing, Yang Yang, et al. Study on combustion and flow characteristics in a rotating detonation combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 32-38. doi: 10.11729/syltlx20160119

旋转爆轰发动机燃烧室的燃烧与流动特性研究

doi: 10.11729/syltlx20160119
基金项目: 

国家自然科学基金 11602207,91641103

详细信息
    通讯作者:

    王宇辉(1986-),男,河南灵宝人,博士,副研究员。研究方向:旋转爆轰发动机的实验和数值模拟。通信地址:四川省绵阳市涪城区青龙大道中段59号西南科技大学科技园(621010)。E-mail:aowuki@163.com

  • 中图分类号: V231.3

Study on combustion and flow characteristics in a rotating detonation combustor

  • 摘要: 设计了一台爆轰环腔外径100mm、内径80mm、长117 mm的不带有尾喷管的旋转爆轰发动机燃烧室,并进行了实验和数值模拟研究,来了解不同当量比下的燃烧和流动特性。在该燃烧室头部,空气通过60个直径2mm孔轴向喷射,氢气通过2mm宽环缝喷射。氢气和空气最大供给总压分别可达12和10.5MPa。实验发现,当量比大于2时,燃烧发生在燃烧室以外,为爆燃;当量比接近于1时,燃烧室内存在多个反向旋转爆轰波,爆轰波平均速度较低,不超过1000m/s;当量比小于0.58时,仅有一个爆轰波准稳态旋转。在当量比为0.55时,旋转爆轰波传播速度为1274m/s。在当量比为1时,进行了17s无热防护的旋转爆轰发动机实验,未发现燃烧室有明显烧蚀。数值模拟表明在流量为400g/s时,有3个爆轰波同向旋转,外壁面侧传播速度约为1998m/s。
  • 图  1  RDE工作原理

    Figure  1.  Operating principle of RDE[2]

    图  2  具有气动塞式喷管的直径6inch的旋转爆轰发动机设备示意图[12]

    Figure  2.  Diagram of the six inch diameter modular research rotating detonation engine device coupled to an aerospike plug nozzle

    图  3  比冲表示的燃料利用率,氢气/空气[12]

    Figure  3.  Fuel utilization shown as specific impulse,Isp,hydrogen/air

    图  4  0.724ms时刻的压力和温度等值线图

    Figure  4.  Pressure and temperature contours at 0.724ms

    图  5  实验设备及示意图

    Figure  5.  Experimental setup and the schematic

    图  6  传感器S2记录的旋转爆轰波压力曲线,氢气和空气流量分别为10 和350g/s

    Figure  6.  Pressure traces of rotating detonation by S2,where mass flow rates of hydrogen and air are 10 and 350g/s,respectively

    图  7  高速摄影拍摄到的旋转爆轰波,50000fps

    Figure  7.  Rotating detonation events captured by a high speed camera,50000fps

    图  8  旋转爆轰发动机尾焰,氢气和空气流量分别为10和350g/s

    Figure  8.  Exhaust plume of rotating detonation engine,where mass flow rates of hydrogen and air are 10 and 350g/s,respectively

    图  9  部分预混燃烧,氢气和空气流量分别为10和72g/s

    Figure  9.  Partially-premixed combustion,where mass flow rates of hydrogen and air are 10 and 72g/s,respectively

    图  10  压力传感器S1和S2采集到的压力曲线,氢气和空气流量分别为10和636g/s

    Figure  10.  Pressure traces recorded by S1 and S2,where mass flow rates of hydrogen and air are 10 and 636g/s,respectively

    图  11  旋转爆轰发动机尾焰,氢气和空气流量分别为10和636g/s

    Figure  11.  Exhaust plume of rotating detonation engine,where mass flow rates of hydrogen and air are 10 and 636g/s,respectively

  • [1] Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34 (1): 125-158. doi: 10.1016/j.proci.2012.10.005
    [2] Wang Y, Wang J. Coexistence of detonation with deflagration in rotating detonation engines[J]. Int J Hydrogen Energy, 2016. DOI: 10. 1016/j. ijhydene. 2016. 06. 026
    [3] Wang Y, Yang J, Zhong C. Shock effects on rotating detonation waves in the hydrogen-air mixture[R]. AIAA 2016-4185.
    [4] Ishihara K, Kato Y, Matsuoka K, et al. Performance evaluation of a rotating detonation engine with conical-shape tail[R]. AIAA-2015-0630, 2015.
    [5] Tang X, Wang J, Shao Y. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combust Flame, 2015, 162: 997-1008. doi: 10.1016/j.combustflame.2014.09.023
    [6] Anand V, George A, Gutmark E. Hollow rotating detonation combustor[R]. AIAA 2016-0124.
    [7] Lin W, Zhou J, Liu S, et al. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber[J]. Exp Therm Fluid Sci, 2015, 62: 122-130. doi: 10.1016/j.expthermflusci.2014.11.017
    [8] Wang Y, Le J, Yang J. Criteria for rotating detonation to pass obstacles near the inlet[R]. AIAA-2016-4879, 2016.
    [9] Yao S, Liu M, Wang J. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J]. Combust Sci Technol, 2015, 187: 1867-1878. doi: 10.1080/00102202.2015.1067202
    [10] Suchocki J A, Yu S J, Hoke J L, et al. Rotating detonation engine operation[R]. AIAA-2012-0119, 2012.
    [11] Fotia M, Schauer F, Kaemming T, et al. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow[R]. AIAA-2015-0631, 2015.
    [12] Fotia M, Schauer F, Hoke J. Experimental study of performance scaling in rotating detonation engines operated on hydrogen and gaseous hydrocarbon fuel[R]. AIAA-2015-3626, 2015.
    [13] Wang Y. Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture[J]. Int J Hydrogen Energ, 2016, 41: 5605-5616. doi: 10.1016/j.ijhydene.2016.02.028
    [14] Cocks P A T, Holley A T, Greene C B, et al. Development of a high fidelity RDE simulation capability[R]. AIAA-2015-1823, 2015.
    [15] Wang Y, Wang J, Li Y, et al. Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow[J]. Int J Hydrogen Energy, 2014, 39 (22): 11792-11797. doi: 10.1016/j.ijhydene.2014.05.162
    [16] Rankin B A, Richardson D R, Caswell A W, et al. Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine[R]. AIAA-2015-1604, 2015.
  • 加载中
图(11)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  184
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-08
  • 修回日期:  2016-09-13
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日