留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体推力矢量技术研究综述

肖中云 江雄 牟斌 陈作斌

肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. doi: 10.11729/syltlx20160207
引用本文: 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. doi: 10.11729/syltlx20160207
Xiao Zhongyun, Jiang Xiong, Mou Bin, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15. doi: 10.11729/syltlx20160207
Citation: Xiao Zhongyun, Jiang Xiong, Mou Bin, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15. doi: 10.11729/syltlx20160207

流体推力矢量技术研究综述

doi: 10.11729/syltlx20160207
基金项目: 

国家自然科学基金项目 11572341

详细信息
    作者简介:

    肖中云(1977-), 男, 四川大竹人, 副研究员。研究方向:流动控制。通信地址:四川省绵阳市二环路南段6号13信箱08分箱(621000)。E-mail:scxiaozy@sina.cn

    通讯作者:

    肖中云, E-mail:scxiaozy@sina.cn

  • 中图分类号: V211.3

Advances influidic thrust vectoring technique research

  • 摘要: 流体推力矢量技术不采用机械偏转,以流动控制方式实现推力转向,有望成为一种更加高效的推力矢量控制方法。目前实现流体推力矢量的主要方法有激波矢量法、双喉道方法、逆流控制方法和同向流方法等,对以上方法选择具有共性的计算与试验数据,对喷管的推力矢量效率、推力损失和流量系数进行了对比分析。结果表明激波矢量方法、双喉道方法和逆流方法能够在大落压比范围内(NPR=1.89~10)实现推力矢量控制,并且具有俯仰/偏航耦合甚至多轴控制的潜力。相比激波矢量法和逆流方法,双喉道和同向流方法在减少推力损失和提高矢量效率上占有优势,不足之处是双喉道方法对喉道进行控制限制了流量系数,而同向流方法的适用落压比范围受到严重限制。为寻求更加高效的矢量喷管技术,国内外相继发展了多种新概念流体推力矢量方法,对每种方法的控制原理、潜在优势和存在的问题挑战进行了探讨,新方法着眼于从喷流出口下游进行控制,对主流的干扰很小,值得深入研究,同时也为流体推力矢量的下一步研究方向提供了借鉴参考。
  • 图  1  几种主要流体推力矢量方法的控制原理

    Figure  1.  Principles of several fluidic thrust vectoring methods

    图  2  3种控制方法的推力系数比较

    Figure  2.  Comparison of thrust coefficients for three control methods

    图  3  双喉道方法与激波矢量法的推力矢量效率比较

    Figure  3.  Comparison of thrust vectoring efficiencies between DTN and SVC

    图  4  双喉道方法与激波矢量法的流量系数比较

    Figure  4.  Comparison of discharge coefficients between DTN and SVC

    图  5  合成射流控制的涡量云图

    Figure  5.  Vorticity contour of synthetic jet flow control

    图  6  合成射流控制射流偏转

    Figure  6.  Jet vectoring caused by synthetic jet

    图  7  双主流合成作用的Coanda效应喷管[39]

    Figure  7.  Coanda effect nozzle with two streams synthetic jet[39]

    图  8  引射效应导致射流摇摆

    Figure  8.  Jet swing caused by pumping effect

    表  1  3种流体推力矢量控制方法的比较

    Table  1.   Comparison of three fluidic thrust vectoring methods

    控制方法 矢量效率 推力系数 流量系数 缺点
    激波法 <3.3°/1% 0.86~0.94 >0.95 推力损失大
    双喉道法 (3.4~5.2)°/1% 0.92~0.96 0.78~0.88 流量系数低
    逆流方法 >5°/1% 0.92~0.97 >0.95 系统复杂
    下载: 导出CSV
  • [1] Bowers A H, Pahle J W. Thrust vectoring on the NASA F-18 high alpha research vehicle[R]. NASA Technical Memorandum 4771, 1996.
    [2] Kowal H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal, 2002, 48(2):145-151. doi: 10.5589/q02-020
    [3] Deere K A. Summary of fluidic thrust vectoring research conducted at NASA langley research center[R]. AIAA-2003-3800, 2003.
    [4] 连永久.射流推力矢量控制技术研究[J].飞机设计, 2008, 28(2):19-24. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201512001157.htm

    Lian Y J. Fluidic thrust vectoring techniques research[J]. Aircraft Design, 2008, 28(2):19-24. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201512001157.htm
    [5] 宋亚飞, 高峰, 何至林.流体推力矢量技术[J].飞航导弹, 2010, (11):72-75. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211004.htm
    [6] Wing D J. Static investigation of two fluidic thrust-vectoring concepts on a two dimensional convergent-divergent nozzle[R]. NASA Technical Memorandum 4574, 1995.
    [7] Deere K A. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[R]. AIAA-2000-3598, 2000.
    [8] Giuliano V J, Wing D J. Static investigation of a fixed-aperture nozzle employing fluidic injection for multiaxis thrust vector control[R]. AIAA-1997-3149, 1997.
    [9] Wing D J, Giuliano V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static conditions[R]. FEDSM97-3228, 1997.
    [10] Shi J W, Wang Z X, Zhang X B, et al. Performance estimation for fluidic thrust vectoring nozzle coupled with aero-engine[R]. AIAA-2014-3771, 2014.
    [11] Miller D N, Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed geometry nozzles[R]. AIAA-99-16262, 1999.
    [12] Deere K A, Berrier B L, Flamm J D, et al. Computational study of fluidic thrust vectoring using separation control in a nozzle[R]. AIAA-2003-3803, 2003.
    [13] Deere K A, Flamm J D, Berrier B L, et al. Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application[R]. AIAA-2007-5085, 2007.
    [14] Flamm J D, Deere K A, Berrier B L, et al. Experimental study of a dual-throat fluidic thrust-vectoring nozzle concept[R]. AIAA-2005-3503, 2005.
    [15] Flamm J D, Deere K A, Mason M L, et al. Design enhancements of the two-dimensional, dual throat fluidic thrust vectoring nozzle concept[R]. AIAA-2006-3701, 2006.
    [16] Flamm J D, Deere K A, Mason M L, et al. Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for supersonic aircraft application[R]. AIAA-2007-5084, 2007.
    [17] 谭慧俊, 陈智.二元双喉道射流推力矢量喷管的数值模拟研究[J].航空动力学报, 2007, 22(10):1678-1684. doi: 10.3969/j.issn.1000-8055.2007.10.016

    Tan H J, Chen Z. A computational study of 2-D dual-throat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power, 2007, 22(10):1678-1684. doi: 10.3969/j.issn.1000-8055.2007.10.016
    [18] 吴正科, 杨青真, 施永强, 等.基于RBF和PSO的双喉道气动矢量喷管优化设计[J].推进技术, 2013, 34(4):451-456. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304005.htm

    Wu Z K, Yang Q Z, Shi Y Q, et al. Optimization design of the dual throat fluidic thrust vectoring nozzle based on RBF and PSO[J]. Journal of Propulsion Technology, 2013, 34(4):451-456. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304005.htm
    [19] Hunter C A, Deere K A. Computational investigation of fluidic counterflow thrust vectoring[R]. AIAA-99-2669, 1999.
    [20] Flamm J D. Experimental study of a nozzle using fluidic counterflow for thrust vectoring[R]. AIAA-1998-3255, 1998.
    [21] Strykowski P J, Krothapalli A, Forliti D J. Counterflow thrust vectoring of supersonic jets[J]. AIAA Journal, 1996, 34(11):2306-2314. doi: 10.2514/3.13395
    [22] Alvi F S, Strykowski P J. Forward flight effects on counterflow thrust vector control of a supersonic jet[J]. AIAA Journal, 2015, 37(2):279-281.
    [23] Strykowski P J. An experimentallmodeling study of jet attachment during counterflow thrust vectoring[R]. NASA-CR-204436, 1996.
    [24] Hunter C A. Experimental, theoretical, and computqational investigation of separated nozzle flows[R]. AIAA-98-3107, 1998.
    [25] Mason M S, Crowther W J. Fluidic thrust vectoring for low observable air vehicles[R]. AIAA-2004-2210, 2004.
    [26] Banazadeh A, Saghafi F, Ghoreyshi M, et al. Multi-directional co-flow fluidic thrust vectoring intended for a small gas turbine[R]. AIAA-2007-2940, 2007.
    [27] Fielding J P, Smith H. FLAVⅡR, an innovative university/industry research program for collaborative research and demonstration of UAV technologies[C]. 25th International Congress of the Aeronautical Sciences, 2006.
    [28] Abbasi A Y, Clarke A, Lawson C P, et al. Design and development of the eclipse and demon demonstrator UAVs[C]. 26th International Congress of The Aeronautical Sciences, 2008.
    [29] Fielding J P, Lawson C P, Pires R, et al. Development of the demon technology demonstrator UAV[C]. 27th International Congress of The Aeronautical Sciences, 2010.
    [30] Gill K, Wilde P, Gueroult R, et al. Development of an integrated propulsion and pneumatic power supply system for flapless UAVs[R]. AIAA-2007-7726, 2007.
    [31] Heo J Y, Yoo K H, Lee Y, et al. Fluidic thrust vector control of supersonic jet using co-flow injection[R]. AIAA-2009-5174, 2009.
    [32] Lamb M, Taylor J G, Frassinelli M C. Static internal performance of a two dimensional convergent divergent nozzle with external shelf[R]. NASA Technical Memorandum 4719, 1996.
    [33] Smith B L, Glezer A. Vectoring and small-scale motions effected in free shear flows usin synthetic jet actuators[R]. AIAA-97-0213, 1997.
    [34] 夏智勋, 罗振兵.合成射流激励器射流矢量控制的物理因素[J].应用数学和力学, 2007, 28(7):811-823. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200707010.htm

    Xia Z X, Luo Z B. Physical factors of a primary jet vectoring control using synthetic jet actuators[J]. Applied Mathematics and Mechanics, 2007, 28(7):811-823. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX200707010.htm
    [35] 罗振兵, 夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展, 2005, 35(2):221-234. doi: 10.6052/1000-0992-2005-2-J2004-044

    Luo Z B, Xia Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234. doi: 10.6052/1000-0992-2005-2-J2004-044
    [36] Park L G, Seifert A. Periodic excitation for jet vectoring and enhanced spreading[J]. Journal of Aircraft, 2001, 38(3):486-495. doi: 10.2514/2.2788
    [37] Trancossi M, Dumas A, Vucinic D. Mathematical modeling of coanda effect[R]. SAE Technical Paper 2013-01-2195, 2013.
    [38] Trancossi M, Dumas A, Das S S, et al. Design methods of Coanda effect nozzle with two streams[J]. INCAS Bulletin, 2014, 6(1):83-95. doi: 10.13111/2066-8201
    [39] Sunol A, Vucinic D. Numerical analysis and UAV application of the ACHEON thrust vectoring nozzle[R]. AIAA-2014-2046, 2014.
    [40] 吴云, 李应红.等离子体流动控制研究进展与展望[J].航空学报, 2015, 36(2):381-405. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm

    Wu Y, Li Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica Et Astronautica Sinica, 2015, 36(2):381-405. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm
    [41] Sinha A, Alkandry H, Fischer M K, et al. The impulse response of a high-speed jet forced with localized arc filament plasma actuators[J]. Physics of Fluids, 2012, 24(12):1-20. http://authors.library.caltech.edu/36737/
    [42] 肖中云, 顾蕴松, 江雄, 等.一种基于引射效应的流体推力矢量新技术[J].航空学报, 2012, 33(11):1967-1974. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211004.htm

    Xiao Z Y, Gu Y S, Jiang X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1967-1974. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211004.htm
    [43] Ozgu M R, Stenning A H. Switching dynamics of bistable fluid amplifiers[R]. AD72383, 1971.
    [44] 曹永飞, 顾蕴松, 程克明, 等.基于被动二次流的射流偏转比例控制[J].航空学报, 2015, 36(3):757-762. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503006.htm

    Cao Y F, Gu Y S, Cheng K M, et al. Proportional control of jet deflection with passive secondary flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):757-762. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503006.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  240
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-22
  • 修回日期:  2017-04-20
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日